
Doubly Efficient Interactive Proofs for General
Arithmetic Circuits with Linear Prover Time

Jiaheng Zhang?, Tianyi Liu??, Weijie Wang? ? ?, Yinuo Zhang?, Dawn
Song?, Xiang Xie†, Yupeng Zhang??.

Abstract. We propose a new doubly efficient interactive proof protocol
for general arithmetic circuits. The protocol generalizes the interactive
proof for layered circuits proposed by Goldwasser, Kalai and Rothblum to
arbitrary circuits, while preserving the optimal prover complexity that is
strictly linear to the size of the circuits. The proof size remains succinct
for low depth circuits and the verifier time is sublinear for structured
circuits. We then construct a new zero knowledge argument scheme for
general arithmetic circuits using our new interactive proof protocol to-
gether with polynomial commitments.
Our key technique is a new sumcheck equation that reduces a claim
about the output of one layer to claims about its input only, instead
of claims about all the layers above which inevitably incurs an overhead
proportional to the depth of the circuit. We developed efficient algorithms
for the prover to run this sumcheck protocol and to combine multiple
claims back into one in linear time in the size of the circuit.
Not only does our new protocol achieve optimal prover complexity asymp-
totically, but it is also efficient in practice. Our experiments show that
it only takes 0.3 seconds to generate the proof for a circuit with more
than 600,000 gates, which is 13 times faster than the original interactive
proof protocol on the corresponding layered circuit. The proof size is 208
kilobytes and the verifier time is 66 milliseconds. Our implementation
can take general arithmetic circuits directly, without transforming them
to layered circuits with a high overhead on the size of the circuit.

1 Introduction

Interactive proofs allow a powerful yet untrusted prover to convince a verifier
through a sequence of interactions that the result of a computation is correctly
computed. Since they were introduced by Goldwasser, Micali, and Rackoff [15]
in the 1980s, interactive proofs have expanded people’s understanding on tradi-
tional static mathematical proofs and led to many important theoretical results
in complexity theory, such as IP=PSPACE [16, 20] and MIP=NEXP [7].

? University of California, Berkeley. Email: {jiaheng_zhang,yinuo,

dawnsong}@berkeley.edu.
?? Texas A&M University. Email: {tianyi,zhangyp}@tamu.edu.

? ? ? Shanghai Jiao Tong University. Email: wangnick@sjtu.edu.cn.
† Shanghai Key Laboratory of Privacy-Preserving Computation. Email:
xiexiang@matrixelements.com.

In recent years, there is great progress on turning interactive proofs from
purely theoretical constructions to practical schemes with efficient implementa-
tions. In the seminal work of [14], Goldwasser, Kalai and Rothblum proposed
doubly efficient interactive proofs where the prover can convince the verifier the
correctness of the evaluation of a layered arithmetic circuit with addition gates
and multiplication gates of fan-in two. The time for the prover to generate all
the messages during the protocol (prover time) is a polynomial on the size of
the circuit, and the time to validate the result (verifier time) is close to linear
in the size of the input for log-space uniform circuits, thus the name “doubly
efficient”. The total communication between the prover and the verifier is only
poly-logarithmic in the size of the circuit and linear in the depth of the circuit,
which is succinct for bounded-depth circuits. We refer the protocol in [14] as
the GKR protocol in this paper. Later, researchers spent great effort improving
the concrete efficiency of the GKR protocol. The prover time was improved to
quasi-linear (O(|C| log |C|)) in [13], and then to close to linear for various cir-
cuits with different structures [21, 23, 30]. Finally, in [26], Xie et al. proposed an
algorithm to improve the prover time to strictly linear (O(|C|)) for layered arith-
metic circuits without assuming any structures, which is asymptotically optimal
and very efficient in practice.

Another important advance of interactive proofs is using them to construct
efficient zero knowledge argument schemes. In [28], Zhang et al. first proposed
to combine the GKR protocol with polynomial commitments to build argument
systems, where the prover can further prove to the verifier the computations
on the prover’s witness, without sending the witness directly to the verifier.
Following the framework, there are many subsequent zero knowledge argument
constructions based on interactive proofs, including [18, 24, 26, 27, 29]. These
schemes demonstrate great prover efficiency and can achieve sublinear verifier
time for structured circuits, thanks to the advantages of the interactive proofs
and the GKR protocol.

Despite the progress of the GKR protocol, a major drawback is that the
protocol only works for layered arithmetic circuits. Each gate can only connect
to the layer above, due to the layer-by-layer reduction of the GKR protocol.
In practice, it introduces a high overhead to pad general circuits to layered
circuits using relay gates. Asymptotically, the circuit size increases from O(|C|)
to O(d|C|) where |C| is the size of the general circuit and d is the depth of the
circuit. This is easily 1-2 orders of magnitude larger in practice as we show in
our experiments, and introduces a big overhead on the prover time. Moreover,
it is also inconvenient to implement circuits in a strictly layered way, and most
existing tools such as rank-1-constraint-system (R1CS) cannot be used directly.
Therefore, in this paper we ask the following question:

Is it possible to generalize the GKR protocol to directly support general cir-
cuits, without introducing any overhead on the prover time?

2

1.1 Our Contributions

We answer the above question affirmatively by proposing a generalized doubly
efficient interactive proofs for arbitrary arithmetic circuits, where each gate can
take the output of any gate as input. The prover time is still linear to the size of
the circuit, and is very efficient in practice. In particular, our contributions are:

– We generalize the GKR protocol to work on arbitrary arithmetic circuits ef-
ficiently for the first time. For a general circuit of size |C| and depth d, the
prover time is O(|C|), the same as the original GKR protocol on a layered cir-
cuit with the same size. The overhead on the proof size and the verifier time is
minimal. The proof size in our new protocol is min{O(d log |C|+d2), O(|C|)}.
For structured circuits, the verifier time is also min{O(d log |C|+d2), O(|C|)}.
Those in the original GKR are min{O(d log |C|), O(|C|)}.

– Together with zero knowledge polynomial commitments, we construct zero
knowledge arguments for general arithmetic circuits. The zero knowledge ver-
sion of our interactive proof protocols does not incur any overhead asymptot-
ically on the prover time, the proof size and the verifier time compared to the
plain version without zero knowledge.

– We fully implement a system, virgo++, for our new interactive proof protocols
and zero knowledge arguments. We show that on random circuits with d = 50
and d = 75, our new protocols are 9-13× faster than the state-of-the-art GKR
protocol on the corresponding layered circuits. The prover time per gate (the
constant in the linear complexity) is only 1.3× more than the original GKR
protocol on layered circuits. Therefore, as long as padding the general circuit
to layered circuit makes the size 1.3× or larger, our new protocol will have
faster prover time. The verifier time of our new protocols is 17-25× faster,
while the proof size is only slightly larger than GKR on layered circuits.

1.2 Technical Overview

The key idea of the GKR protocol is to write the values in the i-th layer of the
circuit as an equation of the values in the previous layer i + 1. Then starting
from the output layer (layer 0), P and V reduce the correctness of the values in
layer i to the correctness of the values in layer i+ 1 recursively, and eventually
to the correctness of the input. V can then validates the correctness of the input
on her own, which completes the reduction and guarantees that the output is
correctly computed. To do so, we use the notation of multilinear extension Ṽi()
of the i-th layer in [22], which is a multilinear polynomial that agrees with all
the values in the i-th layer on the Boolean hypercube, i.e., Ṽi(0, 0, . . . , 0) =
Vi[0], Ṽi(0, 0, . . . , 1) = Vi[1], . . . where Vi is the array representing the values in
the i-th layer of the circuit. Assuming for simplicity that all layers have S gates
and Ṽ takes s = logS variables, we can write Ṽi() as a equation of Ṽi+1():

Ṽi(z) =
∑

x,y∈{0,1}s
(˜addi+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(z, x, y)Ṽi+1(x)Ṽi+1(y))

3

for all z ∈ {0, 1}s, where ˜addi+1(z, x, y) and ˜multi+1(z, x, y) are polynomials
describing the addition/multiplication gates and their connections in the circuit
between layer i and layer i+1. With this equation, the GKR protocol invokes the
sumcheck protocol (See Section 2.2), which reduces the correctness of Ṽi(g) at a
random point g ∈ Fs to the correctness of Ṽi+1(u) and Ṽi+1(v) at two random
points u, v ∈ Fs. Then Ṽi+1(u) and Ṽi+1(v) can be combined back to a single
evaluation of Ṽi+1(w) for w ∈ Fs. At this point, Ṽi+1(w) can be further reduced
to an evaluation of Ṽi+2 using the same equation and protocol for layer i + 1.
Therefore, starting from the output layer, P and V perform the reduction layer
by layer to the input layer, which can be validated by V directly. The prover time
is O(S) in each layer [26] and the proof size is only O(logS). Therefore, the total
prover time is O(dS) = O(|C|) and the proof size is O(d logS) = O(d log |C|).
Extending GKR to general circuits naively. The above equation relies on
the fact that gates in layer i can only take input from gates in layer i + 1. In
a general circuit, a gate in layer i can take input from any gate in layer j for
j > i. As circuits cannot contain cycles (otherwise we cannot get outputs of the
circuit), we can still assign a layer number to each gate in the topological order.
Thus a gate can take input from any gate in layers above, but not below. More
interestingly, every gate in layer i has to have at least one input from layer i+ 1,
otherwise it cannot belong to layer i in the topological order. Because of this
generalization, we can write Ṽi() as:

Ṽi(z) =
∑

x,y∈{0,1}s
(˜addi+1,i+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1,i+1(z, x, y)(Ṽi+1(x)Ṽi+1(y))

+ ˜addi+1,i+2(z, x, y)(Ṽi+1(x) + Ṽi+2(y)) + ˜multi+1,i+2(z, x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . .+ ˜addi+1,d(z, x, y)(Ṽi+1(x) + Ṽd(y)) + ˜multi+1,d(z, x, y)(Ṽi+1(x)Ṽd(y))).

Namely, we have multiple parts in the summation, one for each layer j = i+1, i+
2, . . . , d. P and V run the sumcheck protocol on this equation, which reduces the
correctness of Ṽi(g) at a random point g ∈ Fs to the correctness of Ṽi+1(u) and
Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v) at random points u, v ∈ Fs. Moreover, when reaching
layer i + 1, now V has many evaluations about Ṽi+1 instead of just two. In the
sumcheck protocols of all layers below, V has received one evaluation of Ṽi+1

from the sumcheck of layer k = 0, . . . , i − 1, and two evaluations from layer i.
Nevertheless, V can combine all these evaluations into one evaluation Ṽi+1(w)
using the original protocol multiple times with P. P and V can then run the
protocol recursively layer by layer just as the original GKR protocol to reduce
the correctness of the output layer to the input layer.

It is not hard to show that the generalized protocol is secure. However, it
introduces a big overhead on the prover time. The size of all the polynomials
in the generalized equation becomes O((d − i)S), and the total prover time
for the sumcheck protocol of all layers becomes O(dS + (d − 1)S + . . . + S) =
O(d2S) = O(d|C|). This is as bad as padding the general circuit to a layered
circuit and running the original GKR protocol on it. Even worse, the second
step of combining multiple evaluations into one also introduces a prover time of
O(d|C|), because there are now i+ 1 evaluations to combine instead of two.

4

Extending GKR to general circuits with optimal prover time. In order
to preserve the linear prover time, we introduce two new techniques. First, we
observe that the key reason why the prover time of the sumcheck protocol on the
generalized equation becomes O((d − i)S) is that the multilinear extension Ṽj
of the entire layer j for j > i is used. As layer j has S gates and its multilinear
extension is uniquely defined by these gates, merely writing out all the polyno-
mials Ṽj for j > i takes O((d− i)S) time. There is no hope to reduce the prover
time if we define the equation in this way. Meanwhile, it is also not necessary
to use all the gates in layers above, because gates in layer i can at most take
input from 2S gates in total. Therefore, we propose a new equation to write Ṽi
as a function of multilinear extensions define by only those values used by layer
i from layer j > i. In particular, we have

Ṽi(z) =
∑

x,y∈{0,1}s′
(˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y))

+ ˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y))

+ ˜addi+1,i+2(z, x, y)(Ṽi,i+1(x) + Ṽi,i+2(y)) + ˜multi+1,i+2(z, x, y)Ṽi,i+1(x)Ṽi,i+2(y)

+ . . .+ ˜addi+1,d(z, x, y)(Ṽi,i+1(x) + Ṽi,d(y)) + ˜multi+1,d(z, x, y)Ṽi,i+1(x)Ṽi,d(y)),

where Ṽi,j is the multilinear extension of values used by layer i from layer j for
j > i arranged in a pre-defined order, i.e., a subset of the values in the entire
layer j. Now the total size of the all these polynomials is bounded by 2S. We
also change the range of the summation from {0, 1}s to {0, 1}s′ to informally
denote that now the number of variables is smaller. We will show how to deal
with different sizes from different layers in our formal protocols. We then design
a new algorithm for the prover to run the sumcheck protocol on the equation
above with time complexity O(S) by utilizing the sparsity of the polynomials
˜add and ˜mult. The formal algorithms are presented in Section 3.2.

Combining evaluations of different multilinear extensions. At the end
of the sumcheck protocol on the equation above, P and V reduce the correct-
ness of Ṽi(g) at a random point g ∈ Fs to the correctness of Ṽi,i+1(u) and

Ṽi,i+1(v), Ṽi,i+2(v), . . . , Ṽi,d(v) at random points u, v ∈ Fs′ . When reaching layer
i+ 1, V has many evaluations of multilinear extensions of subsets of Vi+1. Now
we cannot even use the original protocol to combine these points into one, as
they are evaluations of different multilinear extensions, not to mention that
we want to reduce the complexity of the prover time in this step. Our second
technique is to compute them using a layered arithmetic circuit and reduce
these evaluations to a single evaluation of Ṽi through the original GKR pro-
tocol. At this point, the random points in these evaluations are already fixed
by the verifier. We construct a circuit whose input is the values Vi+1 of the
entire layer i + 1, and all the random points in the evaluations, denoted as
v(0), v(1), . . . , v(i) and u(i). The output of the circuit is exactly the evaluations of
the multilinear extensions of the subsets, received from the sumcheck protocols
for all layers below, i.e., Ṽ0,i+1(v(0)), Ṽ1,i+1(v(1)), . . . , Ṽi,i+1(v(i)) and Ṽi,i+1(u(i)).
To compute the output, the circuit selects all the subsets from input Vi and ar-
range them in the predefined order, which can be determined by the structure of

5

the general circuit. The circuit then evaluates the multilinear extensions defined
by these subsets at points from input v(0), v(1), . . . , v(i) and u(i). By executing
the original GKR protocol on this circuit, P and V reduce the correctness of
Ṽ0,i+1(v(0)), Ṽ1,i+1(v(1)), . . . , Ṽi,i+1(v(i)) and Ṽi,i+1(u(i)) to a single evaluation
of the input. As part of the input v(0), v(1), . . . , v(i) and u(i) are known to the
verifier, it is easy to subtract it from the evaluation and obtain Ṽi(w), a single
evaluation of the multilinear extension Ṽi at a random point w ∈ Fs. With this
single evaluation, P and V can continue the sumcheck for layer i+ 1 recursively
and proceed all the way to the input layer. With proper design, we are able to
bound the total size of this circuit in all rounds by O(|C|). Therefore, the prover
complexity in this step is also O(|C|). See Figure 1 and Section 3.3 for the design
of the circuit and the details of the protocol.

Furthermore, inspired by the structure of this circuit, we are able to design
a single sumcheck protocol to combine multiple claims on the subsets to a single
evaluation of Ṽi at a random point. This second approach further improves the
prover time, the proof size and the verifier time. Putting the two steps together,
we are able to construct a generalized GKR protocol for arbitrary arithmetic
circuits while maintaining the optimal prover time of O(|C|).
Building zero knowledge arguments. Finally, following the framework of [12,
24, 26–28], we build zero knowledge arguments for general arithmetic circuits
using our new protocol. We use the standard techniques of zero knowledge sum-
check and low degree extensions in [12, 26] to lift our generalized GKR protocol
to be zero knowledge, and use the polynomial commitment scheme in [27] to
make the protocol a zero knowledge argument.

1.3 Related Work

Interactive proofs were formalized by Goldwasser, Micali, and Rackoff in [15].
In the seminal work of [14], Goldwasser et al. proposed the doubly efficient in-
teractive proof for layered arithmetic circuits. Later, Cormode et al. improved
the prover time of the GKR protocol from O(|C|3) to O(|C| log |C|) using mul-
tilinear extensions instead of low degree extensions in [13]. Several follow-up
papers further reduce the prover time for circuits with special structures. Justin
Thaler [21] introduced a protocol with O(|C|) prover time for regular circuits
where the wiring pattern can be described in constant space and time. In the
same work, a protocol with prove time O(|C| log |C ′|) was proposed for data
parallel circuits with many copies of small circuits of size |C ′|. The complexity
was further improved to O(|C| + |C ′| log |C ′|) by Wahby et al. in [23]. For cir-
cuits with many non-connected but different copies, Zhang et al. [30] showed a
protocol with O(|C| log |C ′|) prover time. Eventually, Xie et al. [26] proposed a
variant of the GKR protocol with O(|C|) prover time for arbitrary layered arith-
metic circuits. All these existing works follow the layered structure of the GKR
protocol and doubly efficient interactive proofs for general arithmetic circuits
have not been considered before.

In [28], Zhang et al. extended the GKR protocol to an argument system us-
ing polynomial commitments. Subsequent works [18, 24, 26, 27, 29] followed the

6

framework and constructed efficient zero knowledge argument schemes based
on interactive proofs. We follow the approach of [12, 26, 27] and constructs
zero knowledge arguments for general circuits instead of layered circuits. No-
tably, there is a recent work [18] on constructing interactive proof-based zero
knowledge arguments for R1CS. The protocol reduces the R1CS to a polyno-
mial commitment on the entire extended witness of all the values in the circuit
using one sumcheck. On the contrary, the GKR protocols reduce the evaluation
of the circuit to only the input of the circuit. As the polynomial commitments are
usually the overhead of the zero knowledge argument schemes, we expect that
our scheme has faster prover time, while the scheme in [18] has smaller proof
size. We give detailed comparisons in Section 5.2. In addition, the scheme in [18]
cannot be used for delegation of computations, which is the original goal of the
GKR protocols. In a recent manuscript [19], the proof size of the scheme in [18]
is improved from square-root to logarithmic in the size of the R1CS instance,
but the prover time is 3.8× slower. In a different setting, Blumberg et al. [10]
construct argument schemes using interactive proofs with two provers.

There is a rich literature of zero knowledge arguments other than schemes
based on interactive proofs. Categorized by their underlying techniques, there
are schemes based on quadratic arithmetic programs (QAP) [17], interactive
oracle proofs (IOP) [9], discrete-log [11], MPC-in-the-head [6] and lattice [8]. We
refer the readers to surveys [25] and recent papers [18] on zero knowledge proofs
and arguments for a more comprehensive list of schemes.

2 Preliminaries

We use negl(·) : N→ N to denote the negligible function, where for each positive
polynomial f(·), negl(k) < 1

f(k) for sufficiently large integer k. Let λ denote

the security parameter. “PPT” stands for probabilistic polynomial time. We use
f(), g() for polynomials, x, y, z for vectors of variables and g, u, v for vectors
of values. xi denotes the i-th variable in x. We use bold letters such as A to
represent arrays. For a multivariate polynomial f , its “variable-degree” is the
maximum degree of f in any of its variables.

2.1 Interactive Proofs

Interactive proofs. An interactive proof allows a prover P to convince a verifier
V the validity of some statement. The interactive proof runs in several rounds,
allowing V to ask questions in each round based on P’s answers of previous
rounds. We phrase this in terms of P trying to convince V that C(x) = y. We
formalize interactive proofs in the following:

Definition 1. Let C be a function. A pair of interactive machines 〈P,V〉 is an
interactive proof for f with soundness ε if the following holds:

– Completeness. For every x such that C(x) = y it holds that Pr[〈P,V〉(x) =
accept] = 1.

7

– ε-Soundness. For any x with C(x) 6= y and any P∗ it holds that Pr[〈P∗,V〉 =
accept] ≤ ε
We say an interactive proof scheme has succinct proof size (verifier time) if

the total communication (verifier time) is O(polylog(|C|, |x|)).

2.2 Doubly Efficient Interactive Proofs for Layered Circuits

In [14], Goldwasser et al. proposed an efficient interactive proof protocol for
layered arithmetic circuits. We present the details of the protocol here.

Sumcheck Protocol The GKR protocol uses the sumcheck protocol as a major
building block. The problem is to sum a multivariate polynomial f : F` → F on
the Boolean hypercube:

∑
b1,b2,...,b`∈{0,1} f(b1, b2, ..., b`). Directly computing the

sum requires exponential time in `, as there are 2` combinations of b1, . . . , b`.
Lund et al. [16] proposed a sumcheck protocol that allows a verifier V to delegate
the computation to a computationally unbounded prover P, who can convince
V that H is the correct sum. We provide a description of the sumcheck protocol
in Protocol 1.

Protocol 1 (Sumcheck). The protocol proceeds in ` rounds.

– In the first round, P sends a univariate polynomial

f1(x1)
def
=
∑

b2,...,b`∈{0,1}
f(x1, b2, . . . , b`) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P.
– In the i-th round, where 2 ≤ i ≤ `− 1, P sends a univariate polynomial

fi(xi)
def
=
∑

bi+1,...,b`∈{0,1}
f(r1, . . . , ri−1, xi, bi+1, . . . , b`) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to
P.

– In the `-th round, P sends a univariate polynomial

f`(x`)
def
= f(r1, r2, . . . , rl−1, x`) ,

V checks f`−1(r`−1) = f`(0) + f`(1). The verifier generates a random challenge
r` ∈ F. Given oracle access to an evaluation f(r1, r2, . . . , r`) of f , V will accept
if and only if f`(r`) = f(r1, r2, . . . , r`). The instantiation of the oracle access
depends on the application of the sumcheck protocol.

The proof size of the sumcheck protocol is O(τ`), where τ is the variable-degree
of f , as in each round, P sends a univariate polynomial of one variable in f ,
which can be uniquely defined by τ + 1 points. The verifier time of the protocol
is O(τ`). The prover time depends on the degree and the sparsity of f , and we
will give the complexity later in our scheme. The sumcheck protocol is complete
and sound with ε = τ`

|F| .

8

Definition 2 (Multi-linear Extension). Let V : {0, 1}` → F be a function.
The multilinear extension of V is the unique polynomial Ṽ : F` → F such that
Ṽ (x1, x2, ..., x`) = V (x1, x2, ..., x`) for all x1, x2, . . . , x` ∈ {0, 1}. Ṽ can be ex-
pressed as:

Ṽ (x1, x2, ..., x`) =
∑

b∈{0,1}`

∏`

i=1
((1− xi)(1− bi) + xibi)) · V (b) ,

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the closed-form equation of the
multilinear extension given above, we can view an array A = (a0, a1, . . . , an−1)
as a function A : {0, 1}logn → F such that ∀i ∈ [0, n − 1], A(i1, . . . , ilogn) = ai.
Here we assume n is a power of 2. Therefore, in this paper, we abuse the use of
multilinear extension on an array as the multilinear extension Ã of A.

Definition 3 (Identity function). Let β : {0, 1}` × {0, 1}` → {0, 1} be the
identity function such that β(x, y) = 1 if x = y, and β(x, y) = 0 otherwise.
Suppose β̃ is the multilinear extension of β. Then β̃ can be expressed as: β̃(x, y) =∏`
i=1((1− xi)(1− yi) + xiyi).

GKR Protocol. Using the sumcheck protocol as a building block, Goldwasser
et al. [14] showed an interactive proof protocol for layered arithmetic circuits.
Let C be a layered arithmetic circuit with depth d over a finite field F. Each gate
in the i-th layer takes inputs from two gates in the (i+ 1)-th layer; layer 0 is the
output layer and layer d is the input layer. The protocol proceeds layer by layer.
Upon receiving the claimed output from P, in the first round, V and P run the
sumcheck protocol to reduce the claim about the output to a claim about the
values in the layer above. In the i-th round, both parties reduce a claim about
layer i− 1 to a claim about layer i through the sumcheck protocol. Finally, the
protocol terminates with a claim about the input layer d, which can be checked
directly by V. If the check passes, V accepts the claimed output.

Notation. We follow the convention in prior works of GKR protocols [13, 21, 26–
28]. We denote the number of gates in the i-th layer as Si and let si = dlogSie.
(For simplicity, we assume Si is a power of 2, and we can pad the layer with
dummy gates otherwise.) We then define a function Vi : {0, 1}si → F that takes
a binary string b ∈ {0, 1}si and returns the output of gate b in layer i, where b is
called the gate label. With this definition, V0 corresponds to the output of the
circuit, and Vd corresponds to the input layer. Finally, we define two additional
functions addi,multi : {0, 1}si−1+2si → {0, 1}, referred to as wiring predicates
in the literature. addi (multi) takes one gate label z ∈ {0, 1}si−1 in layer i − 1
and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if and only if gate z
is an addition (multiplication) gate that takes the output of gate x, y as input.
With these definitions, for any z ∈ {0, 1}si , Vi can be written as:

Vi(z) =
∑

x,y∈{0,1}si+1
(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)Vi+1(x)Vi+1(y))
(1)

9

In the equation above, Vi is expressed as a summation, so V can use the
sumcheck protocol to check that it is computed correctly. As the sumcheck pro-
tocol operates on polynomials defined on F, we rewrite the equation with their
multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1
fi(g, x, y)

=
∑

x,y∈{0,1}si+1
(˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)Ṽi+1(x)Ṽi+1(y)) , (2)

where g ∈ Fsi is a random vector.

Protocol. With Equation 2, the GKR protocol proceeds as following. The prover
P first sends the claimed output of the circuit to V. From the claimed output,
V defines polynomial Ṽ0 and computes Ṽ0(g) for a random g ∈ Fs0 . V and P
then invoke a sumcheck protocol on Equation 2 with i = 0. As described in
Section 2.2, at the end of the sumcheck, V needs an oracle access to fi(g, u, v),
where u, v are randomly selected in Fsi+1 . To compute fi(g, u, v), V computes
˜addi+1(g, u, v) and ˜multi+1(g, u, v) locally (they only depend on the wiring pat-

tern of the circuit, not on the values), asks P to send Ṽ1(u) and Ṽ1(v) and
computes fi(g, u, v) to complete the sumcheck protocol. In this way, V and P
reduce a claim about the output to two claims about values in layer 1. V and
P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers
above, but the number of the sumcheck protocols would increase exponentially.

Combining two claims using a random linear combination. One way
to combine two claims Ṽi(u) and Ṽi(v) is using random linear combinations, as

proposed in [12, 24]. Upon receiving the two claims Ṽi(u) and Ṽi(v), V selects

αi,1, αi,2 ∈ F randomly and computes αi,1Ṽi(u)+αi,2Ṽi(v). Based on Equation 2,
this random linear combination can be written as

αi,1Ṽi(u) + αi,2Ṽi(v)

=αi,1
∑

x,y∈{0,1}si+1

(˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)Ṽi+1(x)Ṽi+1(y))

+αi,2
∑

x,y∈{0,1}si+1

(˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)Ṽi+1(x)Ṽi+1(y))

=
∑

x,y∈{0,1}si+1

((αi,1 ˜addi+1(u, x, y) + αi,2 ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi,1 ˜multi+1(u, x, y) + αi,2 ˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y)) (3)

V and P then execute the sumcheck protocol on Equation 3 instead of Equa-
tion 2. At the end of the sumcheck protocol, V still receives two claims about
Ṽi+1, computes their random linear combination and proceeds to the layer above
recursively until the input layer.

The formal GKR protocol is presented in Protocol 4 in Appendix A. With
the optimal algorithms with a linear prover time proposed in [26], we have the
following theorem:

10

Theorem 1. [26]. Let C : Fn → Fk be a depth-d layered arithmetic circuit.
Protocol 4 is an interactive proof for the function computed by C with soundness
O(d log |C|/|F|). It uses O(d log |C|) rounds of interaction and the running time
of the prover P is O(|C|). Let T be the time to evaluate all ˜addi and ˜multi at the
corresponding random points, the running time of V is O(n+ k+ d log |C|+ T).

3 Generalizing GKR to Arbitrary Arithmetic Circuits

Though the GKR protocol has great prover efficiency as demonstrated in [21,
23, 26, 27] and is used as a major building block to construct fast zero knowledge
proof schemes, one major drawback is that the protocol only works for layered
arithmetic circuits, i.e., each gate can only take input from the layer above. In
this section, we show how to generalize the GKR protocol to arbitrary circuits
with no overhead on the prover time.

We consider a general arithmetic circuit C with fan-in 2, which can be viewed
as a directed acyclic graph (DAG), GC . Each gate in C is a vertex in GC and
each wire is a directed edge in GC . The in-degree of each vertex is at most 2.
The depth of the circuit d is defined as the length of the longest path in the
DAG. Without loss of generality, we assume that all input gates are at layer d,
and all output gates are at layer 0.1 Following the order to evaluate the circuit,
we can actually assign a layer number to each gate topologically. In particular,
if gate g is not an input, suppose gate u and gate v are the input gates of g,
then layer(g) = min(layer(u), layer(v))− 1, where the function layer(x) represents
the layer of the gate x. Because of this definition, an interesting observation is
that a gate at layer i must take at least one input from layer i+ 1, otherwise it
cannot be labeled as in layer i. Also obviously, a gate at layer i can only take
input from layer j such that j > i.

Same as the original GKR protocol, we use Si as the number of gates in
the i-th layer and si = dlogSie. For simplicity, we assume Si is a power of 2,
and we can pad the layer with dummy gates otherwise. The function Vi takes a
binary string b and outputs the b-th gate value in layer i of C. As now every gate
can take input from any layer above, we generalize the notations naturally and
define addi,j ,multi,j : {0, 1}si−1,si,sj → {0, 1} as the wiring-predicate functions
for the general circuit C. addi,j takes one gate label z ∈ {0, 1}si−1 in layer i− 1,
one gate label x ∈ {0, 1}si in layer i and one gate label y ∈ {0, 1}sj in layer j
for j ≥ i, and outputs 1 if and only if gate z is an addition gate that takes the
output of gate x, y as input. multi,j is defined similarly for multiplication gates.

We still use f̃ to represent the multilinear extensions of the function f .

3.1 A Naive Generalization of the GKR Protocol

With these definitions, we first describe a naive generalization of the GKR pro-
tocol to general arithmetic circuits. We follow the core idea of the GKR protocol

1 Note that as we support general circuits, it takes at most one relay gate per in-
put/output to transform an arbitrary circuit to a circuit with such property. Thus
the overhead is small and we assume so for simplicity.

11

to reduce the claim about Vi layer by layer via the sumcheck protocol. In a gen-
eral circuit, a gate in layer i can take the output of any gate in layer i+ 1 to d,
thus we simply extend Equation 2 to have one add and one mult for each layer
above. Recall from above that every gate at layer i must have at least one input
from layer i+ 1, we assume that this is the left input and rewrite the sumcheck
equation in Equation 2 as:

Ṽi(g) =
∑

x∈{0,1}si+1

(∑
y∈{0,1}si+1

˜addi+1,i+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+
∑

y∈{0,1}si+2

˜addi+1,i+2(g, x, y)(Ṽi+1(x) + Ṽi+2(y))

+ . . .+
∑

y∈{0,1}sd
˜addi+1,d(g, x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1

˜multi+1,i+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

+
∑

y∈{0,1}si+2

˜multi+1,i+2(g, x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . .+
∑

y∈{0,1}sd
˜multi+1,d(g, x, y)(Ṽi+1(x)Ṽd(y))

)

(4)

for any g ∈ Fsi . With this equation, starting from the output layer, in round i,
the first step is that P and V engage the sumcheck protocol on Equation 4 to
reduce one claim about layer i to claims about previous layers. At the end of the
sumcheck protocol, P sends V evaluations of Ṽi+1(u), Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v)
on the randomness of u and v. V evaluates all add and mult on her own and
completes the last round of the sumcheck protocol.

In the second step, when going to a new layer, P and V need to combine
multiple claims about this layer. Here in the naive approach, we use the same
method of random linear combinations. When reaching layer i, V has received the
claims about Ṽi from layer 0, 1, . . . , i−1 (twice for i−1). Denote the randomness
of these claims as g(0), g(1), . . . , g(i). V picks a random number αi,j for each claim,
and we can rewrite Equation 4 as:

αi,0Ṽi(g
(0)) + αi,1Ṽi(g

(1)) + . . .+ αi,iṼi(g
(i))

=
∑i

j=0
αi,j

(∑
x∈{0,1}si+1

(
∑

y∈{0,1}si+1

˜addi+1,i+1(g(j), x, y)(Ṽi+1(x) + Ṽi+1(y))

+ . . .+
∑

y∈{0,1}sd
˜addi+1,d(g

(j), x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1

˜multi+1,i+1(g(j), x, y)(Ṽi+1(x)Ṽi+1(y))

+ . . .+
∑

y∈{0,1}sd
˜multi+1,d(g

(j), x, y)(Ṽi+1(x)Ṽd(y)))
)

(5)

V and P then execute the sumcheck protocol on Equation 5 instead of Equa-
tion 4. At the end of the sumcheck protocol, V still receives claims about
Ṽi+1, Ṽi+2, . . . , Ṽd. For layer i+ 1, V computes their random linear combination
and proceeds to the sumcheck protocol for layer i+ 1 recursively.

This protocol is a direct generalization of the GKR protocol in Protocol 4,
and it is not hard to see that the protocol is sound. Unfortunately, it introduces
a big overhead on the prover time. First, in the beginning of the sumcheck
protocol on Equation 4, the equation is defined over the multilinear extensions

12

Ṽi+1, Ṽi+2, . . . , Ṽd. Hence, the prover time in this step is at least O(Si+1 +Si+2 +
. . .+Sd). In fact, merely listing these polynomials and evaluating them at random
points already take O(Si+1 + Si+2 + . . . + Sd) time, not to mention the prover
time of the sumcheck protocol. Therefore, the total prover time is O(dSd + (d−
1)Sd−1 + . . .+S1) = O(d|C|) for all layers. There is a multiplicative overhead of
d on the prover time, which is in fact as bad as transforming the general circuit
to a layered circuit. Second, in the step of random linear combinations, as shown
in Equation 5, V combines i + 1 claims together for layer i. On the right hand
side of the equation, each ˜add and ˜mult has to be evaluated on i + 1 different
random points g(j). This again introduces a prover time of O(d|C|). Therefore,
overall the prover time of this naive generalized GKR protocol is O(d|C|), as
slow as naively transforming the general circuit to a layered circuit.

In the next two subsections, we will show how to remove the overhead of
each of the two steps.

3.2 Sumcheck with Linear Prover Time

As explained above, the main overhead of the sumcheck on Equation 4 in the
first step comes from the fact that each layer can connect to all layers above in a
general circuit, and defining Ṽi+1, Ṽi+2, . . . , Ṽd already blows up the complexity.
Therefore, instead of using the multilinear extension of the entire layer, we define
the multilinear extension of only those gates used in layer i from a previous layer.
As each gate only has two input gates, there are at most 2Si gates connecting to
gates in layer i in total. In this way, the total size of these multilinear extensions
is bounded by O(Si).

Formally speaking, we also generalize the definitions of S and s such that
Si,j denotes the number of gates connecting from layer j (j > i) to layer i, and
si,j = dlogSi,je. We then introduce a new function Vi,j : {0, 1}si,j → F, which is
defined by the subset of gates from layer j connecting to layer i in a pre-defined
order. The function takes a binary string b ∈ {0, 1}si,j and returns the b-th value
in this subset. We also re-define addi,j ,multi,j : {0, 1}si−1+si−1,i+si−1,j → {0, 1}
to take labels from the subsets instead of the labels of the entire layers. In
particular, addi,j(z, x, y) = 1 (multii,j(z, x, y) = 1) if and only if gate z in layer
i−1 is the addition (multiplication) of value Vi−1,i(x) and Vi−1,j(y). With these
definitions, by taking their multilinear extensions, we can rewrite Equation 4 as

Ṽi(g) =
∑

x∈{0,1}si,i+1
(

∑
y∈{0,1}si,i+1

˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y))+

+ . . .+
∑

y∈{0,1}si,d
˜addi+1,d(g, x, y)(Ṽi,i+1(x) + Ṽi,d(y))

+
∑

y∈{0,1}si,i+1
˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y))

+ . . .+
∑

y∈{0,1}si,d
˜multi+1,d(g, x, y)(Ṽi,i+1(x)Ṽi,d(y)))

(6)

In Equation 6, the size of Ṽi,i+1, . . . , Ṽi,d are bounded by O(Si). Moreover, the
˜add and ˜mult polynomials are still sparse. In fact, the total number of nonzeros

13

in all ˜add and ˜mult together is Si. Therefore, using similar ideas proposed in [26],
we are able to develop an algorithm for the prover to run the sumcheck in linear
time O(Si), instead of O(Si + Si+1 + . . .+ Sd).

Before presenting the linear-time algorithm, we make one more refinement
on the equation. Note that Equation 6 consists of multiple sums, because the
number of gates connecting from layer j > i to layer i is different for each
j. We cannot pad them to the same length, as it would introduce an overhead
asymptotically. We combine them into a single sum in the following way. Without
loss of generality, we suppose si,i+1 is the largest. We can then rewrite Equation
6 as:

Ṽi(g) =
∑

x,y∈{0,1}si,i+1
(˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, . . . , ysi,i+2)(Ṽi,i+1(x) + Ṽi,i+2(y1, . . . , ysi,i+2))

+ . . .+ ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, . . . , ysi,d)(Ṽi,i+1(x) + Ṽi,d(y1, . . . , ysi,d))

+ ˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, . . . , ysi,i+2)Ṽi,i+1(x)Ṽi,i+2(y1, . . . , ysi,i+2)

+ . . .+ ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, . . . , ysi,d)Ṽi,i+1(x)Ṽi,d(y1, . . . , ysi,d))

(7)

Note that the only difference between Equation 6 and 7 is that in Equation 7 all
the sums are over y ∈ {0, 1}si,i+1 , the longest binary string. For j = i+2, . . . , d, as
˜addi+1,j , ˜multi+1,j and Ṽi,j only take y1, . . . , ysi,j , we multiply each term with
ysi,j+1 · ysi,j+2 · . . . · ysi,i+1

. This guarantees that the term only appears once
in the sum, when ysi,j+1 = ysi,j+2 = . . . = ysi,i+1

= 1, and thus Equation 7
holds. In fact, ysi,j+1 · ysi,j+2 · . . . · ysi,i+1

is exactly the identity polynomial

β̃((ysi,j+1, ysi,j+2, . . . , ysi,i+1
),1). In this way, we do not have to pad all the

polynomials to the same size. We only pad the size of each subset to the nearest
power of 2, which incurs at most an overhead of 2.

Next, we present an algorithm for P to run the sumcheck protocol on Equa-
tion 7 in linear time. We start with an algorithm to run sumcheck for the product
of two multilinear polynomials in the literature, which we will use as a major
building block.

Linear-time sumcheck for products of multilinear functions [21]. In [21],
Thaler proposed a linear-time algorithm for the prover of the sumcheck protocol
on the product of two multilinear polynomials f and g with ` variables (the algo-
rithm runs in O(2`) time). We present the algorithm in Algorithm 2. Algorithm 2
invokes Algorithm 1 FunctionEvaluations() as a subroutine. The algorithms are
exactly the same as Algorithm 1 and 3 in [26]. Both Algorithm 1 and Algo-
rithm 2 run in time O(2`) and the formal proof can be found in [21, 26]. We
have a lemma as follows:

Lemma 1. Given multilinear functions f and g on ` variables and a book-
keeping table Af for f and a bookkeeping table Ag for g, the prover in Pro-
tocol 1 for f · g runs in O(2`) time. Af = (f(0, . . . , 0), . . . , f(1, . . . , 1)) and
Ag = (g(0, . . . , 0), . . . , g(1, . . . , 1)) are initialized with evaluations of f and g on
the Boolean hypercube, respectively.

14

Algorithm 1 F ← FunctionEvaluations(f,A, r1, . . . , r`)

Input: Multilinear f on ` variables, initial bookkeeping table A, random r1, . . . , r`;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , b`);

1: for i = 1, . . . , ` do
2: for b ∈ {0, 1}`−i do // b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b+ 2`−i] · t
5: A[b] = A[b] · (1− ri) + A[b+ 2`−i] · ri
6: Let F contain all function evaluations f(.) computed at Step 4
7: return F

Algorithm 2 {a1, . . . , a`} ← SumCheckProduct(f,Af , g,Ag, r1, . . . , r`)

Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , r`;
Output: ` sumcheck messages for

∑
x∈{0,1}` f(x)g(x). Each message ai consists of 3

elements (ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,Af , r1, . . . , r`)
2: G ← FunctionEvaluations(g,Ag, r1, . . . , r`)
3: for i = 1, . . . , ` do
4: for t ∈ {0, 1, 2} do
5: ait =

∑
b∈{0,1}`−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) // All

evaluations needed are in F and G.

6: return {a1, . . . , a`};

Linear-time sumcheck for Equation 7. The idea of the prover algorithm
is similar to that proposed in [26]. The algorithm proceeds in two phases, one
summing x and the other summing y. For the ease of presentation, let us consider
the sumcheck on a particular class of equations:

∑
x,y∈{0,1}`

yk1+1 . . . y`f1(g, x, y1, . . . , yk1)s1(y1, . . . , yk1)t(x)+

yk2+1 . . . y`f2(g, x, y1, . . . , yk2)s2(y1, . . . , yk2)t(x) + . . .+

ykm+1 . . . y`fm(g, x, y1, . . . , ykm)sm(y1, . . . , ykm)t(x) ,

(8)

for a fixed point g ∈ F`, where t(x) : F` → F and si(x) : Fki → F are multilinear
extensions of arrays At and Asi , and all functions of fi(x) : F2`+ki → F are
multilinear extensions of sparse arrays with O(2`) nonzero elements in total.
In addition, we require that 2k1 + 2k2 + . . . + 2km = 2`. It is not hard to see
that Equation 7 satisfies these properties, as there are at most Si left input
gates and Si right input gates connected to layer i in the circuit C. If we set
` = si = dlogSie, we have 2k1 + 2k2 + . . .+ 2km = O(Si) in Equation 7.

We use the same intuition in [26] of dividing the sumcheck process into two
phases, one is for x and the other is for y. We rewrite Equation 8 as follows

15

Algorithm 3 Ahg
← Initialize PhaseOne(f1, . . . , fm, s1, . . . , sm,As1 , . . . ,Asm , g)

Input: Multilinear f1, . . . , fm and s1, . . . , sm, initial bookkeeping tables As1 , . . . ,Asm ,
random g = g1, . . . , g`; We have |As1 |+ . . .+ |Asm | = 2`.
Output: Bookkeeping table Ahg ;

1: procedure G← Precompute(g) // G is an array of size 2`.
2: Set G[0] = 1
3: for i = 0, . . . , `− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1

7: ∀x ∈ {0, 1}`, set Ahg [x] = 0
8: for every (z, x, y) such that f ′i(z, x, y) is non-zero do
9: Ahg [x] = Ahg [x] + G[z] · f ′i(z, x, y) ·Asi [y1, . . . , yki]

10: return Ahg ;∑
x∈{0,1}` t(x)hg(x), where

hg(x) =
∑

y∈{0,1}`
(yk1+1 . . . y`f1(g, x, y1, . . . , yk1)s1(y1, . . . , yk1)+

yk2+1 . . . y`f2(g, x, y1, . . . , yk2)s2(y1, . . . , yk2) + . . .+

ykm+1 . . . y`fm(g, x, y1, . . . , ykm)sm(y1, . . . , ykm))

(9)

Phase one. With the formula above, in the first ` rounds, the prover and the
verifier are running exactly a sumcheck on the product of two multilinear poly-
nomials t(x) · hg(x), since functions t and hg can be viewed as functions only in
x, and y can be considered constant (it is always summed on the Boolean hy-
percube). To compute the sumcheck messages for the first ` rounds, given their
bookkeeping tables, this will take O(2`) time by Lemma 1. It remains to show
how to initialize the bookkeeping tables in linear time.
Initializing the bookkeeping tables:

Initializing the bookkeeping table for t in O(2`) time is trivial, since t is a multi-
linear extension of an array and therefore the evaluations on the hypercube are
known. Initializing the bookkeeping table for hg in O(2`) time is more challeng-
ing, but we can take advantage of the sparsity of fi.

Lemma 2. Let Nx be the set of (z, y) ∈ {0, 1}2` such that f ′i(z, x, y) = yki+1 . . . y`
fi(z, x, y1, . . . , yki) is non-zero for some 1 ≤ i ≤ m. Then for all x ∈ {0, 1}`, it
is hg(x) =

∑
(z,y)∈Nx

β̃(g, z) · (∑m
i=1 f

′
i(z, x, y) · si(y1, . . . , yki)).

Proof. Since fi is a multilinear extension, as shown in [21], we have f ′i(g, x, y) =∑
z∈{0,1}` β̃(g, z) f ′i(z, x, y). Therefore,

hg(x) =
∑

z∈{0,1}`
β̃(g, z) · (

∑m

i=1
f ′i(z, x, y) · si(y1, . . . , yki))

=
∑

(z,y)∈Nx

β̃(g, z) · (
∑m

i=1
f ′i(z, x, y) · si(y1, . . . , yki))

16

Lemma 3. The bookkeeping table Ahg can be initialized in time O(2`).

Proof. As fi is sparse,
∑
x∈{0,1}` |Nx| = O(2`). From Lemma 2, given the evalu-

ations of β̃(g, z) for all z ∈ {0, 1}`, the prover can iterate through all (z, y) ∈ Nx
for all x to compute Ahg . The full algorithm is presented in Algorithm 3. Since
each si is the multilinear extension of an array, its evaluations on the Boolean hy-
percube are known. Therefore, we use As1 , . . . ,Asm as the input of Algorithm 3.
|As1 |+ . . .+ |Asm | = 2` as 2k1 + 2k2 + . . .+ 2km = 2`.

Procedure Precompute(g) is to evaluate G[z] = β̃(g, z) =
∏`
i=1((1 − gi)(1 −

zi) + gizi)) for z ∈ {0, 1}`. By the closed-form of β̃(g, z), the procedure iterates
each bit of z, and multiples 1− gi for zi = 0 and multiples gi for zi = 1. In this
way, the size of G doubles in each iteration, and the total complexity is O(2`).

Step 8-9 computes hg(x) using Lemma 2. When f ′i is represented as a map of
((z, x, y), f ′i(z, x, y)) for non-zero values, the complexity of these steps is O(2`)
since

∑
x∈{0,1}` |Nx| = O(2`).

In Protocol 3, the map above is exactly the representation of a gate in the
circuit, where z, x, y are labels of the gate, its left input and its right input, and
f ′i(z, x, y) = 1.

With the bookkeeping tables, the prover runs Algorithm 2 for the product
of multilinear polynomials and the total complexity for phase one is O(2`).

Phase two. At this point, the variable x is bounded to random numbers u ∈ F`.
In the second phase, the equation to sum on becomes

t(u)
∑

y∈{0,1}`
(
∑m

i=1
yki+1 . . . y`fi(g, u, y1, . . . , yki)si(y1, . . . , yki))

Note here that t(u) is merely a constant which the prover already computed in
phase one. For the part behind the summation symbol on y, it has m products
of two multilinear functions to sum. If we naively apply Algorithm 2 to each
product, the prover runs in O(m · 2`) time instead of only O(2`). Fortunately,
we observe that we can merge some products dynamically during the sumcheck
process, which reduces the number of products and removes the m factor in
the complexity. To achieve the linear prover time, we generalize Lemma 1 to
Lemma 4 for the summation of multiple products of multilinear functions.

Lemma 4. Suppose we have 2m multilinear functions f1, f2, . . . , fm and g1
, g2, . . . , gm. Both gi and fi have ki variables. Without loss of generality,
suppose ` ≥ km ≥ km−1 ≥ k1. If 2k1 + 2k2 + . . . + 2km = 2`, given the
bookkeeping tables Af1 , . . . ,Afm for f1, . . . , fm and Ag1 , ·,Agm for g1, . . . , gm,
the prover in Protocol 1 for

∑m
i=1

∑
y∈{0,1}ki fi(y) · gi(y) =

∑
y∈{0,1}`

∑m
i=1

yki+1 . . . y`fi(y1, . . . , yki) · gi(y1, . . . , yki) runs in O(2`) time.

Proof. We present Algorithm 4 for the prover in the sumcheck. P runs in O(2`)
for step 1-3 as |Af1 |+ . . .+ |Afm | = |Ag1 |+ . . .+ |Agm | = 2`. P runs in O(2`) for
step 5-12 as the total number of the operations is O(2k1+2k2+. . .+2km) = O(2`).
So P runs in O(2`) time for Algorithm 4.

17

Algorithm 4 {a1, . . . , a`} ←
SumCheckProduct2(f1,Af1 , g1,Ag1 , . . . , fm,Afm , gm,Agm , r1, . . . , r`)

Input: Multilinear fi and gi, initial bookkeeping tables Afi and Agi for i = 1 to m,
random r1, . . . , r`; We have |Af1 |+ . . .+ |Afm | = |Ag1 |+ . . .+ |Agm | = 2`.
Output: ` sumcheck messages for

∑
y∈{0,1}`

∑m
i=1 yki+1 . . . y`fi(y1, . . . , yki) ·

gi(y1, . . . , yki). Each message ai consists of 3 elements (ai0, ai1, ai2);

1: for i = 1, . . . ,m do
2: Fi ← FunctionEvaluations(fi,Afi , r1, . . . , rki)
3: Gi ← FunctionEvaluations(gi,Agi , r1, . . . , rki)

4: temp = 0
5: for i = 0, . . . ,m do
6: if i > 0 then
7: temp = temp+ fi(r1, . . . , rki) · gi(r1, . . . , rki)
8: for j = ki + 1, . . . , ki+1 do // Suppose k0 = 0 < k1 ≤ . . . ≤ km ≤ km+1 = `
9: if j ≤ ` then

10: for q ∈ {0, 1, 2} do
11: ajq =

∑m
t=i+1

∑
b∈{0,1}kt−j ft(r1, . . . , rj−1, q, b) ·

gt(r1, . . . , rj−1, q, b) + q · temp // All evaluations needed are in Fi and Gi.
12: temp = temp · rj
13: return {a1, . . . , a`};

The sumcheck polynomial for phase two has the same form in Lemma 4. To
compute the sumcheck messages for the last ` rounds, given their bookkeeping
tables, this will take O(2`) time by Lemma 4. We now show how to initialize the
bookkeeping tables in linear time.
Initializing the bookkeeping tables:

Initializing the bookkeeping table for each si in O(2ki) time is trivial, since each
si is a multilinear extension of an array and therefore the evaluations on the
hypercube are known. We also know 2k1 + 2k2 + . . . + 2km = O(2`). It remains
to initialize bookkeeping tables for all fi in O(2`) time. Similar to phase one, we
can leverage the sparsity of fi and we have the lemma as follows:

Lemma 5. Let Ny be the set of (z, x) ∈ {0, 1}2` such that f ′i(z, x, y) = yki+1 . . .
y` fi(z, x, y1, . . . , yki) is non-zero for some 1 ≤ i ≤ m. Then for all y ∈ {0, 1}`,
it is f ′i(g, u, y) =

∑
(z,x)∈Ny

β̃(g, z)β̃(u, x)f ′(z, x, y)

Lemma 5 is a generalization of Lemma 2 and we omit the proof.

Lemma 6. The bookkeeping table Af1 , . . . ,Afm can be initialized in time O(2`).

Proof. As fi is sparse,
∑
y∈{0,1}` |Ny| = O(2`). From Lemma 2, given the eval-

uations of β̃(g, z) and β̃(u, x) for all z, x ∈ {0, 1}`, the prover can iterate all
(z, x) ∈ Nx for all y to compute Af1 , . . . ,Afm . The full algorithm is presented
in Algorithm 5.
P runs procedure Precompute(g) and Precompute(u) in O(2`) time as we

have shown in the proof of Lemma 3. Step 4-5 computes fi(y1, . . . , yki) using

18

Algorithm 5 Af1 , . . . ,Afm ← Initialize PhaseTwo(f1, . . . , fm, g, u)

Input: Multilinear f1, . . . , fm, random g = g1, . . . , gm and u = u1, . . . , u`;
Output: Bookkeeping tables Af1 , . . . ,Afm ;

1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}`, set Afi [y1, . . . , yki] = 0 for all i
4: for every (z, x, y) such that fi(z, x, y1, . . . , yki) is non-zero do
5: Afi [y1, . . . , yki] = Afi [y1, . . . , yki] + G[z] ·U[x] · fi(z, x, y1, . . . , yki)
6: return Af1 ,Af2 , . . . ,Afm ;

Lemma 5. It takes O(2`) time as
∑
y∈{0,1}` |Ny| = O(2`). Therefore, P runs in

O(2`) time for Algorithm 5.

With the bookkeeping tables, the prover runs SumCheckProduct2(f1,Af1

, g1,Ag1 , . . . , fm,Afm , gm,Agm , r1, . . . , r`) in Algorithm 4 and the total com-
plexity for phase two is O(2`).

Combining phase one and phase two, we know that P runs in O(|C|) time
for the sumcheck protocol on Equation 8.

Step one with linear prover time. Finally, the sumcheck protocol for Equa-
tion 7 can be decomposed into several instances that have the form of Equation 8.
The term∑

x,y∈{0,1}si,i+1
(˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜multi+1,d(z, x, y1, y2, . . . , ysi,d)(Ṽi,i+1(x)Ṽi,d(y1, y2, . . . , ysi,d))

is exactly the same as Equation 8. The term∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d)(Ṽi,i+1(x) + Ṽi,d(y1, . . . , ysi,d))

can be rewritten as the sum of∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)Ṽi,i+1(x) + . . .

+ ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d)Ṽi,i+1(x)

and ∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)Ṽi,i+1(y) + . . .

+ ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d)Ṽi,d(y1, . . . , ysi,d) .

The first sum is the same as Equation 8 with si(x) = 1, and the second sum is
the same as Equation 8 with t(x) = 1. The complexity for both cases remains

19

linear. Due to linearity of the sumcheck protocol, the prover can execute these
3 instances simultaneously in every round, sum up the individual messages and
send them to the verifier.

Verifier time and proof size for all sumcheck protocols on Equation 7.
The verifier time for all sumcheck protocols on Equation 7 is the same as Proto-
col 4. V still runs in O(d log |C|) time to verify all sumcheck statements based on
Equation 7. The proof size is also O(d log |C|). Note that this excludes the claims
of Ṽi,j at random points at the end of the sumcheck protocol in each layer, and
we will count them in the next section combining these claims.

3.3 Combining Multiple Claims in Linear Time

By executing the sumcheck protocol on Equation 7, P and V reduce an evalua-
tion of the multiliear extension of a layer to multiple evaluations of multilinear
extensions defined by values in the layers above. As we explained in Section 3.1,
when reaching layer i, V has received multiple evaluations about this layer and
combining these evaluations using a random linear combination would introduce
an overhead on the prover. Even worse, with the refined sumcheck on Equation 7
in Section 3.2, now the verifier has received multiple evaluations of different mul-
tilinear extensions defined by subsets of gates in layer i used by different layers
below. Now even combining these evaluations becomes challenging, let alone
reducing the overhead of the prover.

In this section, we propose two different approaches that not only combine
these evaluations to a single evaluation of the multilinear extension of the entire
layer i, but also incur only a linear prover time in the size of the circuit.

Combining multiple claims by an arithmetic circuit. The key idea of the
first approach is that instead of trying to come up with a complicated protocol to
do the combination, we simply model the computation as an arithmetic circuit!
The circuit takes the values Vi of the entire layer i as the input. In addition,
it also takes the randomness to compute these evaluations of subsets from the
verifier. At this point, these randomness are already chosen by the verifier and
can merely be viewed as constants known both to V and P. The circuit then
selects multiple subsets from Vi according to the wiring of the circuit (i.e., gates
used by layer j < i from layer i), arrange them in the pre-defined order. The
circuit then computes the multilinear extensions of these subsets, and evaluates
them on the corresponding points from the input. The structure of the circuit
Ci is given in Figure 1.

The output of the circuit is exactly the multiple evaluations of the multilinear
extensions, which are known to the verifier. The verifier then executes the original
GKR protocol for layered arithmetic circuits (Protocol 4) on this circuit, which
reduces the output to a single evaluation of the multilinear extension of the input.
This can further be expressed as the evaluation of the multilinear extension of Vi,
together with the multilinear extension of all the randomnesses used to compute
the output. As the latter is known to V, V can compute it locally. In this way,
using the circuit, P and V reduce multiple claims about subsets of layer i to one
claim about Ṽi.

20

𝑟(",$) 𝑟($&',$)…… 𝑟($&',$)(

Expansion

Bookkeeping table of 𝑟(",$) Bookkeeping table of 𝑟($&',$) Bookkeeping table of 𝑟($&',$)(

𝑉!(0) 𝑉!(𝑆! − 2) 𝑉!(𝑆! − 1)……

𝑽",$ 𝑽$&',$ 𝑽$&',$……

Expansion Expansion
……

…

#𝑉",$(𝑟(",$)) #𝑉$&',$(𝑟($&',$)()#𝑉$&',$(𝑟($&',$))……

Inner Product
Inner Product

Inner Product
Inner Product

Choose subsets 𝑽",! , ⋯𝑽!$%,! , 𝑽!$%,!

Fig. 1: Circuit Ci computing Ṽ0,i(r
(0,i)), Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′)

Another tricky part is that the size of the circuit is not optimal if imple-
mented naively. As shown in Figure 1, the circuit expands the randomness to
the bookkeeping tables exactly as described in Algorithm 1, which has logarith-
mic layers logSi. If the circuit also takes Vi as input at the same layer as the
randomness, Vi has to be relayed by logarithmic layers and the size of the circuit
is O(Si logSi). Instead, we feed Vi as input to one layer above the bookkeeping
tables, as shown on the left side of Figure 1. The circuit selects multiple subsets
out of it in one layer, and then computes the inner product between a subset
and its corresponding bookkeeping table, which gives the evaluation of its mul-
tilinear extension. Now the size of the circuit is linear to the total size of all the
subsets. The GKR protocol can support inputs from different layers with such
a structure, as proposed in [28]. We give the formal protocol in Protocol 2.

Protocol 2. Let Ci be the circuit in Figure 1 with input in consisting of two
parts: Vi = (Vi(0), . . . , Vi(Si − 1)) and R = (r(0,i), . . . , r(i−1,i), r(i−1,i)′), and the

output out = (Ṽ0,i(r
(0,i)) , . . . , Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′)). We use V =

(V0,i, . . . ,Vi−1,i,Vi−1,i) to represent subsets of Vi used in layer j (j < i), and
TR = (Tr(0,i) , . . . , Tr(i−1,i) , Tr(i−1,i)′) to represent bookkeeping tables after expand-

ing r(0,i), . . . , r(i−1,i), r(i−1,i)′ .

– P and V invoke Protocol 4 on inner products to reduce the claim about out to
the claim about the layer of V and TR: q = r1 ·V(r) + (1− r1) ·TR(r)

– V requires P to provide values of V(r) and TR(r) to check q = r1 ·V(r) + (1−
r1) ·TR(r).

– P and V invoke Protocol 4 on the left part and the right part of Ci as shown
in Figure 1, separately. For the left part, it reduces the claim about V(r) to the
claim about Vi(r

(i)) in one layer. For the right part, it reduces the claim about
TR(r) to the claim about R(r(i)).

– V asks P to send Vi(r
(i)) and checks the reduction for the left part. V computes

R(r(i)) itself and checks the reduction for the right part. If both checks pass,
output 1; otherwise, output 0.

Efficiency. In order to analyze the prover time for Protocol 2, we consider
the specific structure of Ci, as shown in Figure 1. For layer k < i, there are
Sk,i gates from layer i connected to layer k. The number of gates in Ci is

21

at most 8|V|, which is 8
∑i−1
k=0 Sk,i. By Theorem 1, the prover time for the

circuit Ci is O(
∑i−1
k=0 Sk,i). So the total prover time for circuits C1, . . . , Cd is

8
∑d
i=1

∑i−1
k=0 Sk,i = O(|C|) as

∑d
i=1

∑i−1
k=0 Sk,i equals to the number of all out-

put wires in the circuit, which is at most 2|C|.
The size of Ci is O(S0,i+. . .+Si−1,i) = O(|C|), the depth of Ci is O(logSi) =

O(log |C|) and the size of input Ri is at most s0,i + s1,i + . . .+ si−1,i + si−1,i ≤
d log |C|. Let Qi be the time to evaluate all ˜add and ˜mult at the correspond-
ing random points in Ci. Therefore, the verifier time for Ci is O(log2 |C| +
d log |C| + Qi) and the proof size is O(log2 |C|) by Theorem 1. In total for all
layers, V runs in min{O(d log2 |C|+ d2 log |C|+Q), |C|} time and the proof size
is min{O(d log2 |C|), |C|}, where Q = Q1 +Q2 + . . .+Qd.

Combining multiple claims by a sumcheck protocol. Though the prover
time of the first method is optimal asymptotically, the overhead in practice is
still relatively high. As we will show in Section 5, the cost per gate is around 5×
slower than that of the original GKR protocol on layered circuits. In addition,
it introduces an overhead of O(log |C|) on the proof size and the verifier time.
Therefore, inspired by the design of the circuit in Figure 1, we propose the second
method to combine multiple claims through a single sumcheck protocol.

The key idea is to define a function to connect the gate in Vi with the
same gate in a subset Vk,i. Formally speaking, we define Ck,i(z, x) : {0, 1}sk,i ×
{0, 1}si → F such that it takes two gate labels, one in the subset Vk,i and the
other in the entire layer Vi, and Ck,i(z, x) = 1 if the gate z in Vk,i is exactly the
gate x in Vi. Otherwise Ck,i(z, x) = 0. Note that the function Ck,i serves exactly
the same purpose as the circuit in Figure 1 selecting subsets from Vi.

With the definition of Ck,i, given Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′),

V can combine them through a random linear combination. In particular, V
chooses i+ 1 random values α0,i, . . . , αi−1,i, α

′
i−1,i. Then we have∑i−1

k=0
αk,iṼk,i(r

(k,i)) + α′i−1,iṼi−1,i(r
(i−1,i)′)

=

i−1∑
k=0

αk,i

 ∑
x∈{0,1}si

C̃k,i(r
(k,i), x)Ṽi(x)

+ α′i−1,i
∑

x∈{0,1}si
C̃i−1,i(r

(i−1,i)′ , x)Ṽi(x)

=
∑

x∈{0,1}si
Ṽi(x)

(∑i−1

k=0
αk,iC̃k,i(r

(k,i), x) + α′i−1,iC̃i−1,i(r
(i−1,i)′ , x)

)
=
∑

x∈{0,1}si
Ṽi(x)gi(x) ,

(10)
where C̃k,i is the multilinear extension of Ck,i and C̃k,i(r

(k,i), x) =
∑
z∈{0,1}sk,i

β̃(r(k,i), z)Ck,i(z, x).

We define gi(x) =
∑i−1
k=0 αk,iC̃k,i(r

(k,i), x)+α′i−1,iC̃i−1,i(r
(i−1,i)′ , x). As gi(x)

only depends on the structure of the circuit, V can compute gi(r
(i)) herself given

the randomness of r(i). P and V can execute a sumcheck protocol on Equation 10,
which reduces multiple claims of subsets to a single evaluation of Ṽi(r

(i)) for the
randomness of r(i).

22

Algorithm 6 Agi ← Initialize(r(0,i), . . . , r(i−1,i), r(i−1,i)
′
)

Input: r(0,i), . . . , r(i−1,i), r(i−1,i)′ ;
Output: Agi ;

1: ∀x ∈ {0, 1}si , set Agi [x] = 0
2: for k = 0, · · · , i− 1 do
3: G← Precompute(r(k,i))
4: for t ∈ {0, 1}sk,i such that Ck,i(t, x) = 1 do
5: Agi [x] = Agi [x] + αk,i ·G[t]

6: G← Precompute(r(i−1,i)′)
7: for t ∈ {0, 1}si−1,i such that Ci−1,i(t, x) = 1 do
8: Agi [x] = Agi [x] + α′i−1,i ·G[t]

9: return Agi ;

It remains to show that the sumcheck can be executed by the prover in linear
time. Recall that given the bookkeeping tables of two multilinear polynomials,
the prover can run the sumcheck protocol in linear time using Algorithm 2. In
the equation above, the bookkeeping table AṼi

for Ṽi is already known by the
prove as the values of the gates in layer i. We further describe a linear time
algorithm to initialize the bookkeeping table Agi for gi(x) in Algorithm 6.

Lemma 7. The bookkeeping table Agi can be initialized in O(S0,i+ · · ·+Si−1,i)
time.

Proof. It takesO(S0,i+. . .+Si−1,i+Si−1,i) time to run procedure Precompute(r(0,i)),

. . ., Precompute(r(i−1,i)) and Precompute(r(i−1,i)
′
). There are at most S0,i+. . .+

Si−1,i + Si−1,i entries such that Ck,i(t, x) = 1. Therefore, the running time of
Algorithm 6 is O(S0,i + . . .+ Si−1,i).

Efficiency. Next we analyze the efficiency of the second scheme to combine
multiple claims to one claim. The prover costs O(S1 + . . . + Sd) = O(|C|) to
compute all bookkeeping tables of AṼi

. By Lemma 7, the prover runs Algorithm 6

to compute all bookkeeping tables of Agi in O(
∑d
i=1

∑i−1
k=0 Sk,i) = O(|C|) time.

By Lemma 1, the prover runs the sumcheck protocol on Equation 10 for layer 1
to layer d in O(

∑d
i=1 Si) = O(|C|) time. So the total prover time of the second

scheme is also linear in the circuit size.
By the efficiency of the sumcheck protocol in Protocol 1, it takes O(logSi) for

the verifier to validate the sumcheck protocol on Equation 10 in round i. She also
needs to generate i+1 random numbers and computes gi(r

(i)) in round i. Suppose
V costs Ti to compute gi(r

(i)) and T = T1 + . . . + Td, the total verifier time is
O(logS1 + . . .+logSd)+O(2+ . . .+d+1)+T1 + . . .+Td = O(d log |C|+d2 +T).
The total proof size is O(d logC+d2). Finally, by a similar analysis to the prover
time, the term O(d2) in the complexity is always bounded by O(|C|). This is
because in order for the prover to send a claim about Ṽi,j , there has to be a gate
in layer i connecting to layer j, thus the number of claims cannot be more than

23

2|C|. Therefore, the proof size of our protocol is min{O(d logC + d2), O(|C|)}
and the verifier time is min{O(d log |C|+ d2 + T), O(|C|)}.

3.4 The Full Protocol for General Arithmetic Circuits

Combining the first step and the sumcheck scheme of the second step together,
we give the full protocol of the generalized GKR for arbitrary arithmetic circuits
in Protocol 3. As the prover time, proof size and the verifier time of the second
method to combine multiple points are all better than those of the first method,
we state the protocol and the theorem using the second method.

Protocol 3. Let F be a prime field. Let C: Fn → Fk be a d-depth unlayered
arithmetic circuit. P wants to convince that C(in) = out where in is the input
from V, and out is the output. Without loss of generality, assume n is the power
of 2 and both parties can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random
g ∈ Fs0 and sends it to P. Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on Equation 7 for i = 0. At the end of the
protocol, V receives Ṽ0,1(r(0,1)

′
), Ṽ0,1(r(0,1)), Ṽ0,2(r(0,2)), . . ., Ṽ0,d(r

(0,d)). V
computes left side of the above equation by removing the summation symbol
and replacing x, y with r(0,1)

′
, r(0,1). If it does not equal to the last message

of the sumcheck, V outputs 0 and aborts.
3. For i = 1, ..., d− 1, d:

(a) Given Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)′), Vi−1,i(r
(i−1,i)) and r(0,i),r(1,i), . . .,

r(i−1,i)′ , r(i−1,i), V chooses i+ 1 random elements α0,i, . . . , αi−1,i, α
′
i−1,i

in F and sends them to P. Then P and V run the sumcheck protocol on
Equation 10. If V does not abort in the sumcheck protocol, he receives
Ṽi(r

(i)) for some randomness r(i) ∈ Fsi in the last round.
(b) If i < d, P and V run the sumcheck on Equation 7 by replacing g with

r(i). At the end of the sumcheck protocol, P sends V Ṽi,i+1(r(i,i+1)′),
Ṽi,i+1(r(i,i+1)), . . ., Ṽi,d(r

(i,d)).
V computes the left side of the above equation by removing the summation
symbol and replacing x, y with r(i,i+1)′ , r(i,i+1) and checks it equals to
the last message of the sumcheck. If all checks in the sumcheck pass, V
uses Ṽi,i+1(r(i,i+1)′) and Ṽi,i+1(r(i,i+1)) to proceed to the (i+ 1)-th layer.
Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has one claim of Ṽd(r
(d)). V computes it locally or

queries the oracle of evaluations of Ṽd at r(d) and checks that it is the same
as the claim. If yes, output 1; otherwise, output 0.

Theorem 2. Let C : Fn → Fk be a depth-d general arithmetic circuit. Pro-
tocol 3 is an interactive proof for the function computed by C with soundness
O(d log |C|/|F|). The running time of the prover P is O(|C|). The proof size is
min{O(d logC + d2), O(|C|)}. Let the time to evaluate all ˜addi,j and ˜multi,j at
random points be T ′, the time to evaluate gi(r

(i)) be Ti in Equation 10, and T =
T1+. . .+Td, the running time of V is min{O(n+d log |C|+d2+T+T ′), O(|C|)}.

24

If in addition d = polylog(|C|), T and T ′ are in polylog(|C|) time in Theorem 2,
Protocol 3 is an interactive proof with succinct proof size and verifier time.

We give the formal proof in Appendix B.

4 Zero Knowledge Arguments from Generalized GKR

In this section, we build a new zero knowledge argument protocol for general
arithmetic circuits based on Protocol 3. The construction follows the same ideas
proposed in [12, 26]. In particular, as proposed in [28], we combine the GKR
protocol with a (zero knowledge) polynomial commitment scheme on the witness
to build an argument scheme. In order to achieve zero knowledge, we apply the
zero knowledge sumcheck protocol [12, 26] on Equation 7 and 10 to eliminate
the leakage during the sumcheck. We then use the low degree extensions instead
of multilinear extensions of Vi and Vi,j so that their evaluations sent from the
prover to the verifier do not leak information about the values in the circuit. The
only difference is that for the values Vi in each layer i of the circuit, the verifier
receives multiple claims, one for each of the subsets Vi,j , instead of two claims
about Vi in the original GKR protocol. Thus, we use the low degree extensions
of both Vi and Vi,j with a different random masking polynomial for each. In this
way, these claims leak no information about the values.

For completeness, we present the formal definitions and protocols in Ap-
pendix C. As the second approach to combine multiple claims in Section 3.3 is
better on all aspects, we focus on building zero knowledge arguments using the
second approach. The first approach can also be lifted to a zero knowledge argu-
ment with similar ideas by applying a zero knowledge GKR protocol on circuit
Ci in Figure 1. We state the theorem of our zero knowledge argument here and
give the proof in Appendix C.4.

Theorem 3. For an input size n and a finite field F, let CF represent the set of
general arithmetic circuits of depth d on F, then there exists a zero knowledge
argument for the relation

R = {(C, x;w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x;w) = 1},

as defined in Definition 4. Moreover, using the polynomial commitment scheme
(Definition 5) in [27], for every (C, x;w) ∈ R, the running time of P is O(|C|+
n log n). The running time of V is min{O(|x|+log2 n+d log |C|+d2+T ′′), O(|C|)},
where T ′′ is the total time to compute all functions of ˜add and ˜mult and all
functions of gi(r

(i)) in the second step. The total proof size is min{O(d log |C|+
d2), O(|C|)}. In case d is polylog(|C|) and T ′′ is also polylog(|C|), the protocol
is a succinct argument with succinct verifier time.

5 Implementations and Evaluations

We fully implement our new interactive proof protocols for general arithmetic
circuits and use them to build a zero knowledge argument system for general

25

Prover time (s) Verifier time (s) Proof size (KB)
29 211 213 29 211 213 29 211 213

d = 50
GKR 0.118 0.465 1.908 0.052 0.206 0.838 83 95 107

Our Scheme 1 0.043 0.154 0.576 0.013 0.042 0.151 280 397 535
Our Scheme 2 0.012 0.049 0.197 0.003 0.011 0.044 93 106 120

d = 75
GKR 0.244 0.973 3.954 0.100 0.404 1.608 129 147 166

Our Scheme 1 0.069 0.243 0.910 0.021 0.066 0.237 416 593 803
Our Scheme 2 0.019 0.075 0.304 0.004 0.017 0.066 168 188 208

Table 1: Comparison of our scheme 1, our scheme 2 and the original GKR on
random circuits.

arithmetic circuits. We name our new system Virgo++. The implementation is
in C++. There are around 1900 lines of code for Protocol 3 and 1600 lines for
building the arithmetic circuit to combine multiple evaluations into one (Proto-
col 2). We implement two variants of combining multiple claims to one claim in
step 3(b) of Protocol 3 as described in Section 3.3. One is building the arithmetic
circuit to make the reduction as shown in Figure 1 and the other is running the
sumcheck protocol on Equation 10. Our protocols work on any finite field, and
we choose the extension field Fp2 for the Mersenne prime p = 261 − 1. This is
the same as in [27], and we choose it so that our interactive proof protocols can
be compatible with the polynomial commitments in [27] to build zero knowledge
arguments. The choice of the finite field does not affect our comparison to the
original GKR protocol in the next Section. Our protocols provide 100+ bits of
security. We plan to make our implementation open-source.

Hardware. We ran all of the experiments on an AWS EC2 c5a.2xlarge instance
with an AMD EPYC 7R32 CPU with 3.512Ghz, 8 cores and 16GB of RAM.
Our current implementation is not parallelized and we only utilize a single CPU
core in the experiments. We report the average running time of 10 executions.

5.1 Comparing to the GKR Protocol for Layered Circuits

In this section, we compare the performance of our new protocols with the origi-
nal GKR protocol. For a fair comparison, we re-implement the GKR protocol for
layered arithmetic circuits with the same field and libraries in C++. We generate
random general circuits with depth d = 50 and d = 75. We vary the number of
gates in each layer from 29 to 213. Our schemes can easily go beyond 213, but the
original GKR protocol on the corresponding layered circuits runs out of memory
on our machine. We randomly sample the type of each gate, input value and the
wiring patterns. We execute our new protocols directly on these general circuits.
We refer the one using the arithmetic circuit to combine multiple claims to one
claim in Protocol 2 as scheme 1 and the one using the sumcheck protocol on
Equation 10 to combine multiple claims for step 3(b) in Protocol 3 as scheme
2. We then transform the general circuits to layered circuits by relaying neces-
sary values layer by layer, and execute the original GKR protocol on the layered
circuits. We report the prover time, verifier time and proof size in Table 1.

First, when we transform the general circuits to layered circuits, the size of
the circuit increases by 13× for d = 50 and by 19× for d = 75. This roughly

26

agrees with the blowup of O(d|C|) and justifies the high overhead of transforming
general circuits to layered circuits. As shown in Table 1, when the depth is
50, the prover time of our scheme 1 is faster by 2-4× than the original GKR
protocol, while our scheme 2 is faster by 9-10×. When the depth is 75, the
speedup increases to 3-5× for scheme 1 and 12-13× for scheme 2. Finally, the
prover time in all schemes grows linearly with the size of the circuit, and is very
efficient in practice. The cost per gate in scheme 2 is only 0.49µs.

To further justify the improvement, the prover of the original GKR protocol
for layered circuits takes around 21 field multiplications per gate. In the imple-
mentation of our new protocols, the cost per gate of the prover is around 120
field multiplications for scheme 1 and around 27 field multiplications for scheme
2. The average cost per gate of our scheme 2 is only 1.29× of the original GKR
protocol. In other words, as long as the layered circuit has 22% or more relay
gates, it is faster to remove those relay gates and run our new protocol of scheme
2 on the corresponding general circuit. The speedup in our experiments above
matches the analysis here.

Our protocols introduce an overhead on the proof size compared to the origi-
nal GKR protocol. In particular, the proof size of our first scheme is 3-5× larger
than the GKR protocol, matching the log |C| overhead in the complexity of the
proof size. However, the proof size of our second scheme is very close to the
GKR protocol. It is only 1.1-1.3× larger, showing that this variant reduces the
proof size significantly upon scheme 1. In fact, this overhead is introduced by
the second sumcheck protocol to combine multiple points. The term d2 in the
complexity has minimal impact on the total proof size. In all cases, the proof
size is succinct. The largest proof size is still less than 1MB and the proof size
is always much smaller than the size of the circuit.

As the circuits are generated randomly, the verifier time in all schemes are
linear in the circuit size. Therefore, the comparisons on the verifier time of the
three protocols are similar to the comparisons on the prover time. As shown
in Table 1, our scheme 1 is faster by 4-6× than the original GKR protocol on
circuits with d = 50, and 5-7× faster for d = 75. Our scheme 2 is 17-19× faster
on circuits with d = 50, and 23-25× faster for d = 75. Therefore, we observe in
the experiments that our scheme 2 improves the performance of scheme 1 on all
the aspects on random circuits, proving our statement in Section 3.3. Compared
to the original GKR protocol, our scheme 2 is much faster on the prover time
and the verifier time, and incurs only a small overhead on the proof size.

5.2 Evaluations of Our Zero Knowledge Argument

In this section, we present the performance of our new zero knowledge argument
for general arithmetic circuits, as described in Section 4. We use the zero knowl-
edge polynomial commitment scheme in [27] to lift our new interactive proofs to
zero knowledge arguments. We import the open-source code of zero knowledge
polynomial commitment scheme in [5]. We also compare our zero knowledge
proof system with Spartan [4].

27

1 2 4 8 16 32 64
#SHA256

10−1

100

101

pr
ov

er
 ti

m
e

(s
)

Spartan

Virgo++

(a) P time

1 2 4 8 16 32 64
#SHA256

10−2

10−1

100

ve
rif

ie
r t

im
e

(s
)

Spartan

Virgo++

(b) V time

1 2 4 8 16 32 64
#SHA256

101

102

300

pr
oo

f s
ize

 (K
B) Spartan

Virgo++

(c) Proof size

Fig. 2: Comparison of Virgo++ and Spartan.

We do experiments on the benchmark of computing the hash functions of
SHA-256. For our protocol, we modify the circuit generation file of [1, 2] to
obtain the general arithmetic circuit for SHA-256. In fact, the code first generates
the general circuit of SHA-256 and then pads it to the layered circuit, and our
new protocol makes the circuit design even simpler. The circuit contains other
types of gates such as subtraction, bit decomposition and reconstruction. We
modify our protocols to support all these types of gates. Each SHA-256 circuit
has 99,949 gates in total (around 217), with the input size of 7,226 (around 213).
In the experiments, we vary the number of SHA-256 from 1 to 64.

Figure 2 shows the performance of our system (red line with circle markers).
As shown in the figure, Virgo++ achieves good efficiency in practice. It only
takes 0.15s to generate the proof of one SHA-256 circuit, and 0.014s to verify. In
the largest instance of 64 hashes, our system takes 10.8s to generate the proof,
the verifier time is 0.016s and the proof size is 209KB. The verifier time only
grows slightly with the number of hashes, as the verifier time of our new GKR
protocol is only linear in the size of a single hash in the data-parallel circuit, and
logarithmic in the size of the entire circuit.

Comparing to Spartan. We then compare the performance of our system with
Spartan [18], which also combines the sumcheck protocol and the polynomial
commitments to construct zero knowledge arguments on R1CS. As described
in [18, Section 5], the sumcheck protocol is executed on a equation defined by
the extended witness z and the matrices A,B,C in an R1CS instance. The size
of the extended witness roughly maps to the number of multiplication gates in
a circuit, and the number of nonzero elements in the matrices roughly maps to
the number of addition gates. As Spartan is also using the linear time sumcheck
protocol proposed in [26], the prover time of the sumcheck protocol is expected
to be similar to the sumcheck protocol in our zero knowledge argument (O(n)
in Spartan, where n is the number of nonzeros in the matrices [18], and O(|C|)
in Virgo++). The major improvement of Virgo++ comes from the polynomial
commitment part. In our scheme, the polynomial commitment is only on the
witness of the circuit, while in Spartan, the polynomial commitment is on the
extended witness, which is always larger than the size of the real witness of the
circuit. The improvement comes at the cost of larger proof size. In our scheme,
we reduce the correctness of the output layer by layer to the real witness and

28

the proof size is linear in the depth, while in Spartan, the sumcheck is executed
on one “layer” to check the correctness of the extended witness.

We demonstrate the comparison in our experiments. We download the open-
source code of Spartan from [4]. We use the highly-optimized R1CS for SHA-256
generated by jsnark [3]. Each SHA-256 has 25,656 (around 215) constraints and
25,546 (around 215) witnesses. The number of nonzero elements is 87,689 in A,
54,968 in B and 78,232 in C. Note that the size of the extended witness is 3.5×
larger than the witness of our general circuit for the same function of SHA-256,
while the number of nonzeros in the matrices is roughly the same as the size
of the circuit, matching our analysis above. As the open-source code of Spartan
only works on randomly generated R1CS instances, we generate random R1CS
instances with exactly the same number of constraints, witnesses and nonzero
elements as SHA-256.

Figure 2 shows the performance of Spartan (blue line with star markers).
As shown in the figure, the prover time of Virgo++ is 1.2–1.8× faster than
Spartan. The verifier of Spartan grows linearly with the number of hashes and
is significantly slower than Virgo++. We believe its verifier time can also be
made sublinear for data-parallel circuits, but it is not considered in [18] and its
implementation. In contrast, the proof size of Virgo++ is 4.1–7.9× larger than
Spartan. Other than the reason explained above, this is also partly because we
are using the polynomial commitment in [27] based on interactive oracle proofs
(IOP). It is known that IOP-based schemes have larger proof size compared to
discrete-log based schemes including the one used in Spartan, but are plausibly
post-quantum secure.

The evaluations of Spartan are in the NIZK mode. There is a SNARK mode
of Spartan that has sublinear verifier time in the holographic model, but the
prover time is 9× slower. Finally, as described in Section 1.3, our new GKR
protocol can also be used for delegation of computations. Spartan does not work
in this setting as the size of the extended witness is always asymptotically the
same as the size of the computation and the verifier does not save anything
by delegating the computation using Spartan. In a recent manuscript [19], the
proof size of Spartan is improved from square-root to logarithmic in the size of
the R1CS instance, but the prover time is 3.8× slower. We do not include the
comparison as its implementation is not available.

Acknowledgment

We greatly thank Yuval Ishai for proposing the interesting problem of inter-
active proofs for general circuits and for the helpful discussions on the paper.
This material is based upon work supported by DARPA under Contract No.
HR001120C0087. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily re-
flect the views of DARPA.

29

References

1. Hyrax reference implementation. https://github.com/hyraxZK/hyraxZK
2. Libra implementation. https://github.com/sunblaze-ucb/fastZKP/tree/Libra
3. jsnark. https://github.com/akosba/jsnark (2015)
4. Spartan. https://github.com/microsoft/Spartan (2020)
5. Virgo implementation. https://github.com/sunblaze-ucb/Virgo (2020)
6. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-

linear arguments without a trusted setup. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (2017)

7. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Computational complexity 1(1), 3–40 (1991)

8. Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Annual
International Cryptology Conference. pp. 669–699. Springer (2018)

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Au-
rora: Transparent succinct arguments for r1cs. In: Annual international conference
on the theory and applications of cryptographic techniques. pp. 103–128. Springer
(2019)

10. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using
multiple provers. Cryptology ePrint Archive, Report 2014/846 (2014), https:

//eprint.iacr.org/2014/846

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: Proceedings of the
Symposium on Security and Privacy (SP), 2018. vol. 00, pp. 319–338

12. Chiesa, A., Forbes, M.A., Spooner, N.: A Zero Knowledge Sumcheck and its Ap-
plications. CoRR abs/1704.02086 (2017), http://arxiv.org/abs/1704.02086

13. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with
Streaming Interactive Proofs. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. ITCS ’12

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive
Proofs for Muggles. J. ACM 62(4), 27:1–27:64 (Sep 2015)

15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on computing 18(1), 186–208 (1989)

16. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic Methods for Interactive
Proof Systems. J. ACM 39(4), 859–868 (Oct 1992)

17. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: S&P 2013. pp. 238–252 (2013)

18. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Annual International Cryptology Conference. pp. 704–737. Springer (2020)

19. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zksnarks. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275

20. Shamir, A.: Ip= pspace. Journal of the ACM (JACM) 39(4), 869–877 (1992)
21. Thaler, J.: Time-Optimal Interactive Proofs for Circuit Evaluation. In: Canetti,

R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013 (2013)
22. Thaler, J.: A note on the GKR protocol (2015), available at http://people.cs.

georgetown.edu/jthaler/GKRNote.pdf

23. Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies,
T.: Full accounting for verifiable outsourcing. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM (2017)

30

https://github.com/hyraxZK/hyraxZK
https://github.com/sunblaze-ucb/fastZKP/tree/Libra
https://github.com/akosba/jsnark
https://github.com/microsoft/Spartan
https://github.com/sunblaze-ucb/Virgo
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846
http://arxiv.org/abs/1704.02086
https://eprint.iacr.org/2020/1275
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf

24. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP). pp. 926–943. IEEE (2018)

25. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

26. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Annual International Cryp-
tology Conference. pp. 733–764. Springer (2019)

27. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: S&P 2020

28. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: Security and
Privacy (SP), 2017 IEEE Symposium on. pp. 863–880. IEEE (2017)

29. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A Zero-
Knowledge version of vSQL. Cryptology ePrint (2017)

30. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
Faster verifiable RAM with program-independent preprocessing. In: Proceeding of
IEEE Symposium on Security and Privacy (S&P) (2018)

31

A GKR Protocol on Layered Circuits

Protocol 4. Let F be a finite field. Let C: Fn → Fk be a d-depth layered arithmetic
circuit. P wants to convince that out = C(in) where in is the input from V, and
out is the output. Without loss of generality, assume n and k are both powers of
2 and we can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random
g ∈ Fs0 and sends it to P. Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

(˜add1(g(0), x, y)(Ṽ1(x)+Ṽ1(y))+ ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1))

(Ṽ1(u(1))+ Ṽ1(v(1)))+ ˜mult1(g(0), u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last
message of the sumcheck.

3. For i = 1, ..., d− 1:
– V randomly selects αi,1, αi,2 ∈ F and sends them to P.
– P and V run the sumcheck on the equation

αi,1Ṽi(u
(i)) + αi,2Ṽi(v

(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1(u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

– At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
– V computes the following and checks if it equals to the last message of the

sumcheck. For simplicity, let Multi+1(x) = ˜multi+1(x, u(i+1), v(i+1)) and
Addi+1(x) = ˜addi+1(x, u(i+1), v(i+1)).

(αi,1Multi+1(u(i)) + αi,2Multi+1(v(i))(Ṽi+1(u(i+1))Ṽi+1(v(i+1)))+

(αi,1Addi+1(u(i)) + αi,2Addi+1(v(i))(Ṽi+1(u(i+1)) + Ṽi+1(v(i+1)))

If all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to
proceed to the (i+ 1)-th layer. Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has two claims Ṽd(u
(d)) and Ṽd(v

(d)). V evaluates Ṽd
at u(d) and v(d) using the input and checks that they are the same as the two
claims. If yes, output 1; otherwise, output 0.

B Proof of Theorem 2

Proof. Completeness. The completeness is straightforward by the complete-
ness of the sumcheck protocol.

32

Soundness. For the soundness, for any PPT adversary A, we use Ṽ ′ to represent
the correct messages corresponding to Ṽ in Protocol 3 with input in and the
correct execution for circuit C. Suppose C(in) 6= out, there must exist a layer
i such that Ṽj(r

(j)) = Ṽ ′j (r(j)) and Ṽk,j(r
(k,j)) = Ṽ ′k,j(r

(k,j)) for j > i and all

k < j but Ṽi(r
(i)) 6= Ṽ ′i (r(i)) or Ṽk,i(r

(k,i)) 6= Ṽ ′k,i(r
(k,i)) for some k < i, which

event is defined as Ei. This event can be divided into three cases:

– Case 1: The random elements are chosen in a way such that
∑i−1
k=0 αk,iṼ

′
k,i(r

(k,i))+

α′i−1,iṼ
′
i−1,i(r

(i−1,i)′) =
∑i−1
k=0 αk,iṼk,i(r

(k,i))+α′i−1,iṼi−1,i(r
(i−1,i)′). This hap-

pens with probability at most 1
|F| .

– Case 2: The above case does not happen, but at the end of sumcheck protocol
induced by Equation 10, the final round random evaluation (e.g. Ṽi(r

(i))) is
consistent with the single evaluation of Ṽ ′i (r(i)). By the soundness of sumcheck

protocol this happens with probability at most 2dlogSie
|F| .

– Case 3: We have Ṽi(r
(i)) 6= Ṽ ′i (r(i)), but the verifier accepts after the sum-

check protocol for Ṽi(r
(i)). Since we assume that Ṽj(r

(j)) = Ṽ ′j (r(j)) and

Ṽk,j(r
(k,j)) = Ṽ ′k,j(r

(k,j)) for j > i and all k < j, this happens with prob-

ability at most 2dlogSi+1e
|F| by the soundness of sumcheck protocol.

Thus the overall probability that event Ei happens is at most 2(dlogSie+dlogSi+1e)+1
|F| =

O(log |C|
|F|).

Eventually, by the union bound, we have the following statement:

Pr[C(in) 6= out ∧ V outputs 1] ≤ Pr[∃i, Ei]
≤ Pr[E0] + Pr[E1] + . . .+ Pr[Ed−1]

≤ O(
log |C|
|F|) +O(

log |C|
|F|) + . . .+O(

log |C|
|F|)

≤ O(
d log |C|
|F|)

The efficiency follows the efficiency analysis of Section 3.2 and Section 3.3.

C Our New Zero Knowledge Argument Scheme

C.1 Definitions

We introduce definitions of zero knowledge arguments and zero knowledge poly-
nomial commitments before presenting the formal protocols.

Zero knowledge arguments. An argument system for an NP relationship R
is a protocol between a computationally-bounded prover P and a verifier V.
At the end of the protocol, V is convinced by P that there exists a witness w

33

such that (x;w) ∈ R for some input x. We focus on arguments of knowledge
which have the stronger property that if the prover convinces the verifier of the
statement validity, then the prover must know w. We use G to represent the
generation phase of the public parameters pp. Formally, consider the definition
below, where we assume R is known to P and V.

Definition 4. Let R be an NP relation. A tuple of algorithm (G,P,V) is a zero
knowledge argument of knowledge for R if the following holds.

– Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

〈P(pp, w),V(pp)〉(x) = 1

– Knowledge Soundness. For any PPT prover P∗, there exists a PPT extrac-
tor E such that given the access to the entire executing process and the random-
ness of P∗, E can extract a witness w such that pp← G(1λ), π∗ ← P∗(x, pp)
and w ← EP∗(pp, x, π∗), the following probability is negl(λ):

Pr[(x;w) /∈ R ∧ V(x, π∗, pp) = 1]

– Zero knowledge. There exists a PPT simulator S such that for any PPT
algorithm V∗, auxiliary input z ∈ {0, 1}∗, (x;w) ∈ R, pp output by G(1λ), it
holds that

View(〈P(pp, w),V∗(z, pp)〉(x)) ≈ SV∗(x, z)

We say that (G,P,V) is a succinct argument system if the total communication
between P and V (proof size) are poly(λ, |x|, log |w|).

In the definition of zero knowledge, SV∗ denotes that the simulator S is
given the randomness of V∗ sampled from polynomial-size space. This definition
is commonly used in existing transparent zero knowledge proof schemes [6, 9,
11, 24, 26, 27].

Zero knowledge polynomial commitment. Let F be a finite field, F be a
family of `-variate polynomial over F, and D be a variable-degree parameter.
We use W`,d to denote the collection of all monomials in F and N = |W`,D| =
(D+1)`. A zero knowledge verifiable polynomial commitment (zkPC) for f ∈ F
and t ∈ F` consists of the following algorithms:

– pp← zkPC.KeyGen(1λ),
– com← zkPC.Commit(f, rf , pp),
– ((y, π); {0, 1})← 〈zkPC.Open(f, rf), zkPC.Verify(com)〉(t, pp)

Definition 5. A zkPC scheme satisfies the following properties:

– Completeness. For any polynomial f ∈ F and value t ∈ F`, pp← zkPC.KeyGen(1λ),
com← zkPC.Commit(f, rf , pp), it holds that

Pr [〈zkPC.Open(f, rf), zkPC.Verify(com)〉(t, pp) = 1] = 1

34

– Knowledge Soundness. For any PPT adversary A, pp← zkPC.KeyGen(1λ),
there exists a PPT extractor E. Given any tuple (pp, com∗) and the executing
process of A, E can extract a function f∗ ∈ F and the randomness rf∗ such
that (f∗, rf∗) ← EA(pp, com∗) and com∗ ← zkPC.Commit(f∗, rf∗ , pp). The
following probability is negligible of λ:

Pr
[
((y
∗
, π
∗
); 1)← 〈A(), zkPC.Verify(com∗)〉(t, pp) ∧ (f

∗
, rf∗)← E

A
(pp, com∗) ∧ f∗(t) 6= y

∗
]

– Zero Knowledge. For security parameter λ, polynomial f ∈ F , pp← zkPC.KeyGen(1λ),
PPT algorithm A, and simulator S = (S1,S2), consider the following two ex-
periments:

RealA,f (pp):
1. com← zkPC.Commit(f, rf , pp)
2. t← A(com, pp)
3. (y, π) ←
〈zkPC.Open(f, rf),A〉(t, pp)

4. b← A(com, y, π, pp)
5. Output b

IdealA,SA(pp):

1. com← S1(1λ, pp)
2. t← A(com, pp)
3. (y, π) ← 〈S2,A〉(ti, pp), given ora-

cle access to y = f(t).
4. b← A(com, y, π, pp)
5. Output b

For any PPT algorithm A and all polynomial f ∈ F, there exists simulator S
such that

|Pr[RealA,f (pp) = 1]− Pr[IdealA,SA(pp) = 1]| ≤ negl(λ).

C.2 Zero Knowledge Sumcheck

To build a zero knowledge argument for arbitrary arithmetic circuit using Proto-
col 3, we follow the same blueprint of [26] using zkPC, zero knowledge sumcheck
and low degree extensions. In the following, we present the zero knowledge ver-
sion of step 3(b) and step 3(a) in Protocol 3, followed by the whole zero knowl-
edge argument.

In step 3(b) of the full protocol, P and V execute a sumcheck protocol on
Equation 7, during which P sends V evaluations of the polynomial at several
random points chosen by V. These evaluations leak information about the values
in the circuit, as they can be viewed as weighted sums of these values.

To prevent the leakage, we take the zero knowledge sumcheck proposed by
Xie et al. in [26]. To prove

H =
∑

x1,x2,...,x`∈{0,1}
f(x1, x2, . . . , x`),

the prover generates a random polynomial g such that g(x1, . . . , x`) = a0 +
g1(x1) + g2(x2) + . . . + g`(x`), where gi(xi) = ai,1xi + ai,2x

2
i + . . . + ai,τx

τ
i is a

random univariate polynomial of degree τ (τ is the variable degree of f). Note
here that the size of g is only O(τ`), while the size of f is exponential in `. P
commits to the polynomial g using zkPC.Commit, and sends the verifier a claim
G =

∑
x1,x2,...,x`∈{0,1}

g(x1, x2, . . . , x`). The verifier picks a random number ρ ∈ F,

and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,x`∈{0,1}
(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`)).

35

At the last round of this sumcheck, the prover opens the commitment of g at
g(r1, . . . , r`) using zkPC.Open, and the verifier computes f(r1, . . . , r`) by sub-
tracting ρg(r1, . . . , r`) from the last message, and compares it with the oracle
access of f . It is shown that as long as the polynomial commitment is zero knowl-
edge, the protocol is zero knowledge. Intuitively, this is because the information
of f transmitted in the sumcheck protocol is exactly masked by the randomness
of g. We present the protocol in Protocol 5 and we have the following theorem:

Protocol 5. We assume the existence of a zkPC protocol defined in Section C.1.
For simplicity, we omit the randomness rf and public parameters pp, vp without
any ambiguity. To prove the claim H =

∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`):

1. P selects a polynomial g(x1, . . . , x`) = a0+g1(x1)+g2(x2)+. . .+g`(x`), where
gi(xi) = ai,1xi + ai,2x

2
i + . . .+ ai,τx

τ
i and all ai,js are uniformly random. P

sends H =
∑

x1,x2,...,x`∈{0,1}
f(x1, x2, . . . , x`), G =

∑
x1,x2,...,x`∈{0,1}

g(x1, x2, . . . , x`)

and comg = zkPC.Commit(g, rg, pp) to V.
2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P.
3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,x`∈{0,1}

(f(x1, x2, . . . , x`) + ρg(x1, x2, . . . , x`))

4. At the last round of the sumcheck protocol, V obtains a claim h`(r`) =
f(r1, r2, . . . , r`) + ρg(r1, r2, . . . , r`). P opens the commitment of g at r =
(r1, . . . , r`) and V verifies by using zkPC.Open and zkPC.Verify. If the verifi-
cation fails, V aborts.

5. V computes h`(r`) − ρg(r1, . . . , r`) and compares it with the oracle access of
f(r1, . . . , r`).

Theorem 4 ([26]). Protocol 5 is complete and sound for the relationship of
H =

∑
x1,x2,...,x`∈{0,1}

f(x1, x2, . . . , x`). In addition, for every verifier V∗ and every

`-variate polynomial f : F` → F with variable degree d, there exists a simulator
S such that given access to H =

∑
x1,x2,...,x`∈{0,1} f(x1, x2, . . . , x`), S is able

to simulate the partial view of V∗ in Protocol 5. The efficiency of prover time,
verifier time and proof size in Protocol 5 retain the same as in Protocol 1.

We apply the zero knowledge sumcheck directly on the sumcheck equation
(Equation 7 and 10) of our new GKR protocol. It eliminates all the leakage
during the sumcheck protocol.

C.3 Zero Knowledge GKR

Even with the zero knowledge sumcheck, the protocol still leaks information
about values in the circuit. In particular, at the end of the zero knowledge
sumcheck, V still needs an oracle access to f(r1, . . . , r`). When executed on
Equation 7, the verifier evaluates all ˜add and ˜mult at the random point, and

36

queries the prover for the evaluations of Ṽ0,i, · · · , Ṽi−1,i. These evaluations reveal
information about values in the circuit.

To prevent this leakage, we use the same idea in [26] to replace them with
their low-degree extensions V̇0,i, · · · , V̇i−1,i. Let

V̇j,i(x)
def
= Ṽj,i(x) + Zj,i(x) ·

∑
w∈{0,1}

Rj,i(x1, w), (11)

where Zj,i(x) =
∏sj,i
k=1 xk(1 − xk) is the vanishing polynomial, i.e., Zj,i(x) = 0

for all x ∈ {0, 1}sj,i , and Rj,i is the mask polynomial with only two variables
generated by P.

Additionally, in the last round of the sumcheck on Equation 10, V asks for
Ṽ (r(i)), which leaks information about Vi. With exactly the same idea as above,
we replace it with its low-degree extension V̇i such that

V̇i(x1, . . . , xsi)
def
= Ṽi(x1, . . . , xsi) + Zi(x1, . . . , xsi)

∑
w∈{0,1}

Ri(x1, w), (12)

where Zi(x) =
∏si
i=1 xi(1 − xi) is still the vanishing polynomial, and Ri is still

a mask multilinear polynomial with only two variables. As R0,i, · · · , Ri−1,i and
Ri are randomly selected by P, revealing several evaluations of them does not
leak information about V0,i, · · · , Vi−1,i and Vi thus the values in the circuit.
The zero knowledge polynomial commitment scheme is used to commit to these
masking polynomials and later open them at random points. With these changes,
Equation 7 becomes

V̇i(g) =
∑

x,y∈{0,1}si,i+1

w∈{0,1}

[β̃(w,1)(˜addi+1,i+1(g, x, y)(V̇ ′i,i+1(x) + V̇i,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, . . . , ysi,i+2)(V̇ ′i,i+1(x) + V̇i,i+2(y1, . . . , ysi,i+2))

+ . . .+ ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, . . . , ysi,d)(V̇ ′i,i+1(x) + V̇i,d(y1, . . . , ysi,d))

+ ˜multi+1,i+1(g, x, y)(V̇ ′i,i+1(x)V̇i,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, . . . , ysi,i+2)(V̇ ′i,i+1(x)V̇i,i+2(y1, . . . , ysi,i+2))

+ . . .+ ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, . . . , ysi,d)(V̇ ′i,i+1(x)V̇i,d(y1, . . . , ysi,d))

+ β̃((x, y),1)Zi(g)Ri(g1, w)]

(13)
The equation holds because V̇j,i agrees with Ṽj,i on the Boolean hypercube
{0, 1}si,j , as Zj,i(z) = 0 for binary inputs.

Now P and V instead execute the zero knowledge sumcheck protocol on Equa-
tion 13. At the end of the protocol, V receives V̇i,i+1(r(i,i+1)′), V̇i,i+1(r(i,i+1)), . . . ,

V̇i,d(r
(i,d)) for random points r(i,i+1)′ , r(i,i+1), . . . , r(i,d) chosen by V. They no

longer leak information about Vi,i+1, . . . , Vi,d. V then evaluates ˜multi,j and ˜addi,j
on the randomness as before, computes Zi(g), β̃(c, 1), β̃((r(i,i+1)′ , r(i,i+1)),1) where
c ∈ F is a random point chosen by V for the variable w. V also opens Ri(g1, w)
at point c with P using zkPC, and checks that together with the points received

37

from P, they are consistent with the last message of the sumcheck, i.e., the ora-
cle access to the evaluation of the polynomial in the zero knowledge sumcheck.
V then uses these values to proceed to the second step of combining multiple
evaluations, i.e., step 3(a) in Protocol 3. We have the following theorem.

Theorem 5. For every verifier V∗, there exists a simulator S such that given
oracle access to V̇i(g) and V̇i,i+1(r(i,i+1)′), V̇i,i+1(r(i,i+1)), . . . , V̇i,d(r

(i,d)), S is
able to simulate the partial view of V∗ in the zero knowledge sumcheck protocol
on Equation 13.

Proof sketch. The completeness and the soundness inherits from the zero
knowledge sumcheck protocol and zkPC. For zero knowledge, we combine the
simulator S1 in zkPC and the simulator S2 in the zero knowledge sumcheck
protocol to construct the simulator S. Therefore, V only learns V̇i,i+1(r(i,i+1)′),

V̇i,i+1(r(i,i+1)), . . ., V̇i,d(r
(i,d)) at the end of the protocol, which leaks no infor-

mation about Ṽi,i+1, · · · , Ṽi,d because of mask polynomials of Ri,i+1, · · · , Ri,d.
Efficiency. Compared with the plain sumcheck protocol in step 3(a) of Proto-
col 3, the prover costs extra O(1) time to compute zkPC.Commit and zkPC.Open
for Ri(g1, w) and O(log |C|) compute zkPC.Commit and zkPC.Open for the mask
polynomial in Protocol 5. Therefore, the total prover time is still O(|C|). The ver-
ifier time is min{O(d log |C|+d2), O(|C|)} while the proof size is also min{O(d log |C|
+d2), O(|C|)}.
Combine multiple evaluations in zero knowledge. With low degree exten-
sions of V̇0,i, . . . , V̇i−1,i and V̇i, we modify Equation 10 to

i−1∑
k=0

αk,iV̇k,i(r
(k,i)) + α′i−1,iV̇i−1,i(r

(i−1,i)′)

=

i−1∑
k=0

αk,i

 ∑
x∈{0,1}si

C̃k,i(r
(k,i), x)V̇i(x)

+ α′i−1,i

∑
x∈{0,1}si

C̃i−1,i(r
(i−1,i)′ , x)V̇i(x)+

i−1∑
k=0

αk,iZk,i(r
(k,i))

∑
w∈{0,1}

Rk,i(r
(k,i)
1 , w) + α′i−1,iZi−1,i(r

(i−1,i)′)
∑

w∈{0,1}

Ri−1,i(r
(i−1,i)′

1 , w)

=
∑

x∈{0,1}si ,w∈{0,1}

[
β̃(w, 1)V̇i(x)

(
i−1∑
k=0

αk,iC̃k,i(r
(k,i), x) + α′i−1,iC̃i−1,i(r

(i−1,i)′ , x)

)
+

β̃(x,1)

(
i−1∑
k=0

αk,iZk,i(r
(k,i))Rj,i(r

(k,i)
1 , w) + α′i−1,iZi−1,i(r

(i−1,i)′)Ri−1,i(r
(i−1,i)′

1 , w)

)]
,

(14)
The equation holds because V̇i agrees with Ṽi on the Boolean hypercube {0, 1}si ,
as Zi(z) = 0 for binary inputs. To execute the second step, the prover com-
mits to mask polynomials of R0,i, . . . , Ri−1,i using zkPC. P and V then run
the zero knowledge sumcheck protocol on Equation 14. At the end of the pro-

tocol, the verifier receives evaluations of R0,i(r
(0,i)
1 , c), . . . , Ri−1,i(r

(i−1,i)
1 , c) on

a random point c chosen by V for the variable w. He opens R0,i(r
(0,i)
1 , c), . . . ,

38

Ri−1,i(r
(i−1,i)
1 , c) using the zkPC. Then V evaluates gi(r

(i)) as before, computes

all Zk,i(r
(k,i)), Zi−1,i(r

(i−1,i)′), β(c, 1), β(r(i),1), shaves them off to obtain the

evaluation of V̇i(r
(i)). We have the following theorem.

Theorem 6. For every verifier V∗, there exists a simulator S such that given
oracle access to V̇i(r

(i)) and V̇0,i(r
(0,i)), . . . , V̇i−1,i(r

(i−1,i)), V̇i−1,i(r
(i−1,i)′), S is

able to simulate the partial view of V∗ in the zero knowledge sumcheck protocol
on Equation 14.

Proof sketch. The completeness and the soundness inherits from the zero
knowledge sumcheck protocol and zkPC. For zero knowledge, we combine the
simulator S1 in zkPC and the simulator S2 in the zero knowledge sumcheck
protocol to construct the simulator S. Therefore, V only learns V̇i(r

(i)) at the
end of the protocol, which leaks no information about Ṽi because of the mask
polynomail of Ri.

Efficiency. Compared with the plain sumcheck protocol in the second step, the
prover costs extra O(i) time to compute zkPC.Commit and zkPC.Open for i con-
stant size polynomials of R0,i, . . . , Ri−1,i and O(log |C|) compute zkPC.Commit
and zkPC.Open for the mask polynomial in Protocol 5. Therefore, the total prover
time is O(|C| + 1 + . . . + d) = O(|C|). The verifier time is min{O(d log |C| +
d2), O(|C|)} while the proof size is also min{O(d log |C|+ d2), O(|C|)}.

C.4 Putting Everything Together

Combining the zero knowledge variants of step 3(a) and 3(b) in Protocol 3
with the zkPC scheme, we get a zero knowledge argument protocol for general
arithmetic circuits.

Proof Sketch of Theorem 3. The correctness and the soundness follow from
those of the three building blocks, by Theorem 5, 6 and Definition 5.

To prove zero knowledge, consider a simulator S that calls the simulator S1
of zero knowledge sumcheck given in Theorem 5 for step 1, the simulator S2 of
combining multiply claims to one claim with zero knowledge given in Theorem 6
for step 2 and the simulator S3 of zkPC in Definition 5 for committing and
opening of all hiding polynomials as subroutines. Then S can simulate the partial
view of every verifier V∗ for any general arithmetic circuit C only given oracle
access to x.

The complexity of our zero knowledge argument scheme follows from the
efficency of Protocol 5 and the extra complexity of applying zkPC.Commit to the
input layer demonstrated in [27].

39

	Doubly Efficient Interactive Proofs for General Arithmetic Circuits with Linear Prover Time

